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CHAPTER 1 :- FUNDAMENTAL OF CONTROL SYSTEM

Control system engineering is the branch of engineering which deals with the
principles of control theory to design a system which gives desired behaviour in a controlled
manner. Hence, this is interdisciplinary. Control system engineers analyze, design, and
optimize complex systems which consist of highly integrated coordination of mechanical,
electrical, chemical, metallurgical, electronic or pneumatic elements. Thus control
engineering deals with diverse range of dynamic systems which include human and
technological interfacing.

Input; stimulus Output: response
- Control i -

Desired response system Actual response

Control system engineering focuses on analysis and design of systems to improve
the speed of response, accuracy and stability of system. The two methods of control system
include classical methods and modern methods. The mathematical model of system is set up
as first step followed by analysis, designing and testing. Necessary conditions for the stability
are checked and finally optimization follows.

In classical method, mathematical modelling is usually done in time domain, frequency
domain or complex s domain. Step response of a system is mathematically modelled in time
domain differential analysis to find its settling time, % overshoot etc. Laplace transforms are
most commonly used in frequency domain to find the open loop gain, phase margin, band
width etc of system. Concept of transfer function, sampling of data, poles and zeros, system
delays all comes under the classical control engineering stream.

Modern control engineering deals with Multiple Input Multiple Output (MIMO)
systems, State space approach, Eigen values and vectors etc. Instead of transforming complex
ordinary differential equations, modern approach converts higher order equations to first order
differential equations and solved by vector method.

Automatic control systems are most commonly used as it does not involve manual
control. The controlled variable is measured and compared with a specified value to obtain the
desired result. As a result of automated systems for control purposes, the cost of energy or
power as well as the cost of process will be reduced increasing its quality and productivity.

Before | introduce you the theory of control system it is very essential to know the
various types of control systems. Now there are various types of systems, we are going to
discuss only those types of systems that will help us to understand the theory of control system
and detail description of these types of system are given below:



Linear Control Systems

In order to understand the linear control system, we should know the principle of
superposition. The principle of superposition theorem includes two the important properties and

they are explained below:

Homogeneity: A system is said to be homogeneous, if we multiply input with some constant ‘A’
then output will also be multiplied by the same value of constant (i.e. A).

Additivity: Suppose we have a system ‘S’ and we are giving the input to this system as ‘a,’ for
the first time and we are getting output as ‘b, corresponding to input ‘a,’. On second time we
are giving input ‘a;’ and correspond to this we are getting output as ‘b,’. Now suppose this time
we giving input as summation of the previous inputs ( i.e. a; + a,) and corresponding to this
input suppose we are getting output as (b, + b,) then we can say that system ‘S’ is following the
property of additivity. Now we are able to define the linear control systems as those types of
control systems which follow the principle of homogeneity and additivity.

Examples of Linear Control System

Consider a purely resistive network with a constant dc source. This circuit follows the principle
of homogeneity and additivity. All the undesired effects are neglected and assuming ideal
behaviour of each element in the network, we say that we will get linear voltage and current
characteristic. This is the example of linear control system.

Non-linear Systems

We can simply define non linear control system as all those system which do not follow the
principle of homogeneity. In practical life all the systems are non-linear system.

Examples of Non-linear System

A well known example of non-linear system is magnetization curve or no load curve of a dc
machine. We will discuss briefly no load curve of dc machines here: No load curve gives us the
relationship between the air gap flux and the field winding mmf. It is very clear from the curve
given below that in the beginning there is a linear relationship between winding mmf and the air
gap flux but after this, saturation has come which shows the non linear behavior of the curve


http://www.electrical4u.com/superposition-theorem/�
http://www.electrical4u.com/characteristic-of-separately-excited-dc-generator/#magnetic-or-open-circuit-characteristic-of-separately-excited-DC-generator�
http://www.electrical4u.com/characteristic-of-separately-excited-dc-generator/#magnetic-or-open-circuit-characteristic-of-separately-excited-DC-generator�

or characteristics of the non linear control system.
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In recent years, control systems plays main role in the development and advancement
of modern technology and civilization. Practically every aspects of our day-to-day life is
affected less or more by some control system. A bathroom toilet tank, a refrigerator, an air
conditioner, a geezer, an automatic iron, an automobile all are control system. These systems
are also used in industrial process for more output. We find control system in quality control of
products, weapons system, transportation systems, power system, space technology, robotics
and many

Requirement Of Good Control System

Accuracy: Accuracy is the measurement tolerance of the instrument and defines the limits of the
errors made when the instrument is used in normal operating conditions. Accuracy can be
improved by using feedback elements. To increase accuracy of any control system error
detector should be present in control system.

Sensitivity: The parameters of control system are always changing with change in surrounding
conditions, internal disturbance or any other parameters. This change can be expressed in
terms of sensitivity. Any control system should be insensitive to such parameters but sensitive
to input signals only.

Noise: An undesired input signal is known as noise. A good control system should be able to
reduce the noise effect for better performance.

Stability: It is an important characteristic of control system. For the bounded input signal, the
output must be bounded and if input is zero then output must be zero then such a control
system is said to be stable system.

Bandwidth: An operating frequency range decides the bandwidth of control system.
Bandwidth should be large as possible for frequency response of good control system.

Speed: It is the time taken by control system to achieve its stable output. A good control
system possesses high speed. The transient period for such system is very small.



Oscillation: A small numbers of oscillation or constant oscillation of output tend to system to
be stable.

Types Of Control Systems
There are two main types of control system. They are as follow

Open loop control system
Closed loop control system

Open Loop Control System

A control system in which the control action is totally independent of output of the system then
it is called open loop control system. Open loop system is also called as Manual control
system. Fig — 1 shows the block diagram of open loop control system in which process output
is totally independent of controller action.

Desired Process Controller
Response Qurtpur Process Output
( Controller [ >
Process
Inpur

Practical Examples Of Open Loop Control System

Electric Hand Drier — Hot air (output) comes out as long as you keep your hand under the
machine, irrespective of how much your hand is dried.

Automatic Washing Machine — This machine runs according to the pre-set time irrespective
of washing is completed or not.

Bread Toaster — This machine runs as per adjusted time irrespective of toasting is completed
or not.

Automatic Tea/Coffee Maker — These machines also function for pre adjusted time only.
Timer Based Clothes Drier — This machine dries wet clothes for pre — adjusted time, it does
not matter how much the clothes are dried.

Light Switch — lamps glow whenever light switch is on irrespective of light is required or not.

. Volume on Stereo System — Volume is adjusted manually irrespective of output volume level.

. Advantages Of Open Loop Control System

Simple in construction and design.
. Economical. Easy to maintain.
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Closed Loop Control System

Control system in which the output has an effect on the input quantity in such a manner that
the input quantity will adjust itself based on the output generated is called closed loop control
system. Open loop control system can be converted in to closed loop control system by
providing a feedback. This feedback automatically makes the suitable changes in the output
due to external disturbance. In this way closed loop control system is called automatic control
system. Figure below shows the block diagram of closed loop control system in which
feedback is taken from output and fed in to input.
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Practical Examples Of Closed Loop Control System

Automatic Electric Iron — Heating elements are controlled by output temperature of the iron.
Servo Voltage Stabilizer — Voltage controller operates depending upon outputvoltage of the
system.

Water Level Controller— Input water is controlled by water level of the reservoir.

Missile Launched & Auto Tracked by Radar — The direction of missile is controlled by
comparing the target and position of the missile.

An Air Conditioner — An air conditioner functions depending upon the temperature of the
room.

Cooling System in Car — It operates depending upon the temperature which it controls.

Advantages OF Closed Loop Control System

Closed loop control systems are more accurate even in the presence of non-linearity.
Highly accurate as any error arising is corrected due to presence of feedback signal.
Bandwidth range is large.

Facilitates automation.

The sensitivity of system may be made small to make system more stable.

This system is less affected by noise.
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Disadvantages Of Closed Loop Control System

They are costlier.

They are complicated to design.

Required more maintenance.

Feedback leads to oscillatory response.

Overall gain is reduced due to presence of feedback.

Stability is the major problem and more care is needed to design a stable closed loop system.

Comparison of Closed Loop And Open Loop Control System

OPEN LOOP CONTROL SYSTEM CLOSED LOOP CONTROL SYSTEM

The feedback element is absent. The feedback element is always present.
An error detector is not present. An error detector is always present

It is stable one. It may become unstable.

Easy to construct. Complicated construction.

It is an economical. It is costly.

Having small bandwidth. Having large bandwidth

It is inaccurate. It is accurate.

Examples: Hand drier, tea Maker Examples:Servo voltage stabilizer,

Feedback Loop Of Control System

A feedback is a common and powerful tool when designing a control system. Feedback
loop is the tool which take the system output into consideration and enables the system to
adjust its performance to meet a desired result of system.

In any control system, output is affected due to change in environmental condition or
any kind of disturbance. So one signal is taken from output and is fed back to the input. This
signal is compared with reference input and then error signal is generated. This error signal is
applied to controller and output is corrected. Such a system is called feedback system. Figure
below shows the block diagram of feedback system.
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When feedback signal is positive then system called positive feedback system. For
positive feedback system, the error signal is the addition of reference input signal and feedback
signal. When feedback signal is negative then system is called negative feedback system. For
negative feedback system, the error signal is given by difference of reference input signal and
feedback signal.

Effect Of Feedback

Refer figure beside, which represents feedback system where
R = Input signal

E = Error signal

G = forward path gain

H = Feedback C = Output signal B=Feedback signal

et e

B(+ or -}

Block Diagram

1. Error between system input and system output is reduced.
2. System gain is reduced by a factor 1/(1+GH).
3 Improvement in sensitivity.

4, Stability may be affected.
5. Improve the speed of response.

Standard Input Test Signals : These are also known as test input signals. The input signal is
very complex in nature, it is complex because it may be a combination of various other signals.
Thus it is very difficult to analyze characteristic performance of any system by applying these
signals. So we use test signals or standard input signals which are very easy to deal with. We
can easily analyze the characteristic performance of any system more easily as compared to
non standard input signals. Now there are various types of standard input signals and they are
written below:

Unit Impulse Signal : In the time domain it is represented by d(t). The Laplace
transformation of unit impulse function is 1 and the corresponding waveform associated with the
unit impulse function is shown below.
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Unit Step Signal : In the time domain it is represented by u (t). The Laplace transformation of
unit step function is 1/s and the corresponding waveform associated with the unit step function
is shown below.

4 u(t)

0 t

Unit Ramp signal : In the time domain it is represented by r (t). The Laplace transformation of
unit ramp function is 1/s* and the corresponding waveform associated with the unit ramp
function is shown below.

fr(t)

Unit Ramp Signal
Parabolic Type Signal : In the time domain it is represented by t?/ 2. The Laplace
transformation of parabolic type of the function is 1 / s* and the corresponding
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waveform associated with the parabolic type of the function is shown below.
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CHAPTER 2

TRANSFER FUNCTION

TRANSFER FUNCTION

For any control system there exists a reference input termed as excitation or cause
which operates through a transfer operation termed as transfer function and produces an
effect resulting in controlled output or response. Thus the cause and effect relationship between
the output and input is related to each other through a transfer function.

Input fexcitation function (r) Output /response (c)

[ > Transfer functiong | >

Therefore, Transfer Function(TF) g = ¢

r

It is not necessary that the output will be of same category as that of the input. For
example — in case of an electrical motor, the input is an electrical quantity and output is a
mechanical one. In control system all mathematical functions are converted to their
corresponding Laplace transforms. So the transfer function is expressed as a ratio of Laplace
transform of output function to Laplace transform of input function.

Input R(s) QutputC(s)

G(s)

The transfer function can be expressed as

G(s) = &l

Ris)

While doing Laplace transform, while determining transfer function we assume all initial
conditions to be zero.

- : Lelt)
Hence, transfer function G(s) = 1
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The transfer function of a control system is defined as the ration of the Laplace
transform of the output variable to Laplace transform of the input variable assuming all
initial conditions to be zero.

Procedure for determining the transfer function of a control system are as
follows :

1. First deduce the equations for the system

2. Now take Laplace transform of the system equations, assuming initial conditions as zero.
3. Specify system output and input

4. Lastly take the ratio of the Laplace transform of the output and the Laplace transform of the
input which is the required transfer function

Methods of obtaining a Transfer function: There are major two ways of obtaining a transfer
function for the control system .The ways are —

» Block diagram method : It is not convenient to derive a complete transfer function for a
complex control system. Therefore the transfer function of each element of a control system is
represented by a block diagram. Block diagram reduction techniques are applied to obtain the
desired transfer function.

Signal Flow graphs: Signal Flow Graph is a modified form of a block diagram which gives a
pictorial representation of a control system . Signal flow graph further shortens the
representation of a control system.

The transfer function of a system is completely specified in terms of its poles and zeroes and
the gain factor. Let us know about the poles and zeroes of a transfer function in brief.
sl

G(s) = mr = K (system gain)

Where, K = system gain,

Z1 3 Z0 ) e Z» = zero’'s of the transfer function
R o p. = pole’s of the transfer function

Putting the denominator of equation (i) equal to zero we get the poles value of the transfer
function. For this the T.F is infinity.

Putting the numerator of equation (ii) equal to zero we get the value of zero of the transfer
function. For this T.F is equal to zero.

There are two types of transfer functions :-
i) Open loop transfer function( O.L.T.F) : Transfer function of the system without feedback path
or loop.



i) Closed loop transfer function (C.L.T.F) : Transfer function of the system with feedback path
or loop.

EXAMPLE 4.1. Find the transfer function of the given network J_L .

Solution : Step 1 : Apply KVL in mesh (1) ® s

- - L
V.= RHI..ﬂ wf 113) % 'ﬂ-} i
dt @ )
Apply KVL in mesh (2) : STORPTN.. ..} .. N
di Input Cratput
Vo=Lg w(1.14) Fig. 1.9.

Step 2 : Take Laplace transform of equations (1.13) and (1.14) with assumption that all initial
conditions are zero.

V,(s) = Ris) + sLI(3) {1.15)
Vyis) =Ll {s) fL16)
Step 3 : Calculation of transfer function

Vals) sLijs)
Viis) © (R+sL)I(s)

Wals) sL
Jors
Vi(s)  R+slL (1.17)

Equation 1.17 is the required transfer functior.

EMAMBPLE 1.2. Determine the transfer function of the electrical network shown in Fig. 1.10.

Solution : Step 1: Apply KVL in both meshes K L
B e T oy

ot TP _

1¢. |
E, = ij ST R e
FrEe TRk
Step 2 : Take Laplace transform of equations (1.18) and (1.19) a _
Efe) = RIs) + <LT ) + él[s] - x{s][mshiE]

C

2
M] .20

¥ R
Efs) = I{ﬂ[ G
Eqfs) = éi (#) 2n
Step 3 : Determination of transfer function

his) _Iis) Cs
Efs) G5 I{s)sLe+SRC+1]

Eqls) 1
Efs) ~ SLC+SRC+1 Ans, A1.22)




EXAMPLE 1.3. Obtain the transfer fonction :1—:;; for Fig. 1.11.
1 ' ;
: iy
Solution : Step 1; KCL at node o' iy
[ =t +i, ~{1.23) i :

; 1% —1"2 i an
EI ? _JRT._ F:I Rﬁ% 1"'!
Ty = ’: ﬂ"1 LAY

T~ FH' 1‘11|

Ry
Put all these values in equation (1.23)

V, V=V, _d
% = Thﬂm (V=¥ ~{1.24)

Step 2: Take Laplace transform afeqmﬁmfl 24)

v
2 o V-3 V9 + Co V-G Ve

-il— 7 2{5}+C3F1&}=—F{3}+C5F55}
| e | 1
‘-"zis{ﬁ+ E-I-CE_ =Tr-']r;s{-§:+i:‘s:|
Step 3 : Determination of transfer function

;E{E)[Elﬂjﬂflﬁci- £ 1{33[3_".529]
1

Vals) _ Ra+RyRyCs
ﬁ{S} R+ R+ RiECs Ans, ..[1.25)

EXAMPLE 1.4. Find the transfer function of lag network shown in Fig. 1,12
Solution : Step 1: Apply KVL in both meshes

et) = Ryi(f) + Ryi(f) + % j' it} dt -[1.26)

ft) =R )+ 2 [it 127
Step 2 : Laplace transform of equation {1.26) and {1.27) & T ; i
1
Efs) = |:R| + K, +E]ﬂ:3} el t‘,) $ F ElEh

Eu,fsj = [R;+%:|”,SJ ROSHERS ]:,'I | AR



Tnput-Output Relationship # 4

Step 3 : Calculation of transfer function

[R; + é-lh[ﬂ

E.(s) =
0 [ W]m}
Eqls) 14+ RB,Cs

Efs) - 1+RCs+RCs
Equation (1.28) is the required transfer function.
EXAMPLE 1.5. Determine the transfer function of Fig, 1.13.

= ind g <t~ i

. i

i Bl
':" i j:"d‘-'r--'; !
TR | S i T |
o n.i _W.,_‘ SRR IC o i e — ; Mﬁ_ :
R’ J Hye ..R..I Ld _|
R Ty
I'l'&'.:l 1 l} § 3 E‘gﬂ } g, l:-r }
, e,
Fig. 1.13. Y

Solution : Step 1 : calculation of Z, :

1
, .G R
g PRI Uity
Nty
Step 2 1 Calculation of Z,:
1 KRGS+l

By =N ST
Step 3 : Calculation of transfer function in terms of 2, and £,

Bl Z(e)
E() ~ Zi(5)+Za09)

{128}

A1.29)

L A1.30)

¥
{131y

Step 4 : Calculation of transfer function in terms of K, R,.C, and C;. Put the values of Z, (s) and zz{ﬁ]l

from equations (1.29) & 1.30 in equation (1.31)

Els)  (1+RCS)Se
Eis) " R KGSH
RS+ B0,

Eals) _ {1+RGSN1+RC:S)
Efs)  (1+RCSN1+RC8)+ BiC,S

The above equation is the required transfer function of the given circuit.

{132



Chapter3

CONTROL SYSTEM COMPONENTS
&
MATHAMATICAL MODELING OF PHYSICAL SYSTEM

In a control system, the devices which are used to convert the process variables in one
form to another form is known as Transducer. Transducer can also be defined as a device
which transforms the energy from one form to another. For example a thermocouple
converts the heat energy to electrical voltage. In control system the following devices are
used as a transducer

Potentiometer

DC Servomotor

AC servomotor
Synchros

Stepper Motor
Magnetic Amplifier
Tachogenerator
Gyroscope

Differential Transformer

RN REWNERE

Potentiometer - A Potentiometer is a simple device which is used for mechanical
displacement either linear or angular. Thus a Potentiometer is electro mechanical transducer
which converts the mechanical energy to electrical energy. The input to the device is in the
form of linear mechanical displacement or rotational mechanical displacement. When the
voltage is applied across the fixed terminal. The output voltage is proportional to the
displacement. Let Ei=Input voltage Eo=Output voltage




x; = displacement from zero position
x; = total length of translational potentiometer
R = total resistance of potentiometer
" Under ideal condition the output voltage E, is glven by

Epi= ' Er 9.1}
Equation (9.1) shows a Imeﬁr relationship shown in Fig, 9.2,
7
I
- g
¥ E.

b ! W

Fig. 9.1. Fig. 8.2

Similarly for rotational motion, the cutput voltage E, is given by
E; = Er-grl f9.2)

where 8, = input angular displacement (degree or radians)
B, = total travel of wiper (degree or radians) \
Figure Ej(u} Shows an arrangement of error sensing transducer. In this arrangemant l:'l-'-'qh
potentiometers are connected in parallel. Theuut-put voltage taken across the variable termma_'[sn,l
of the two potentiometer. The output voltage E, Is given by 3

E, = K8, - &) (8.3}
E; is the voltage EIPP|iEda 8, and 8, are the angular displacement of the wiper,

Kis constant and is known as sensitivity. The block diagram is shown in Fig, 9.3 (b).

i é—@‘ s 5
| ;.
(E)

Fig. 8.3.

9.3, SERVOMOTORS

Servomotors are used in feedback control systems. Servomaotors have low rotor inertia and high
speed of response. The servomotors are also know as control motors. The servomotors which are
used in feedback control system should have linear relationship between electrical control signal
and rotor speed, forgie speed characteristic should be linear, the response of the servomator
should be fast and inertia should be low. -

i



9.4. TYPES OF SERVOMOTORS

The servomotors are classified as
(i} A.C. servomotors
(ff) D.C. servomotors
(i) Special servomotors
D.C. servomotors are further classified as armature controlled d.c. servomotors and field
control d.o. servomotors,

9.4.1. A.C. Servomotors

These motors having two parts namely stator and rotor. A.C. servomators are hwo phase
induction motor. The stator has two disteibuted windings. These windings are displaced from
each other by 90F electrical. One winding is called main winding or reference winding, The reference
winding is excited by constant a.c. voltage. The other winding is called control winding. This
winding is excited by variable control voltage of the same frequency as the reference winding,
but having a phase displacement of #0° electrical. The variable contral voltage for control winding
is obkained from a servoamplifier. The direction of rotation depends upon phase relationship of
violtages applied to the two windings. The direction of rotation of the rotor can be reversed by
reversing the phase difference between control voltage and reference voltage.

The rotor of a.¢. servomotors are of two types (a) squirrel cage rotor (b) drag cup type rotor.
The squirrel cage rotor having large length and small diameter, so its resistance js very high. The
air gap of squirrel cage is kept small, In Control winding
drag cup type there are two airgaps. For
the rotor a cup of non-magnetic Valtage
conducting material is used. A stationary from
hmmﬂplanadbfhveenﬂwemducung servoamplifier
cup o complete the magnetic circult, The *

resistance of drag cup type is high and

therefore having high starting torque, main winding or
Generally aluminium is used for cup. o reference winding
Figure 5.4, Shows the schematic diagram supply

af two phase a.c. servomotor and Fig.

9.5(2),and (£) shows the two types of rotos. Fg- 8.8. A, servomiar

ﬂia!nr--.\

S/

Fig. 8.5 (a] Squirrel cage rator Fig. 9.5 (b} Drag cup type rotor



9.4.2. Torque-speed Characteristic

The torque speed characteristic of two phase induction motor depends upon the ratio of
reactance to resistance, For high resistance and low reactance, the characteristic is lincar and for
large ratio of X to R it becomes non-linear as shown in Fig. 9.6(a). The torque-speed characteristics
for various control voltages are almost linear as shown in Fig, 9.6(b).

. 1 V2 Vs>l
1 L
! R
g Small & 1y —
E= V,
Spoed — e ¢ Speed —
) (b
Fig. 9.E.

9.4.3. D.C. Ssrvomotors

DL servomaotors are separately excited or permanent magnet d.c. servomotors, The armature
of d.¢. servomotor has a large resistance, therefore torque speed characteristic is linear. The torque
speed characteristic shows in Fig. 9.7(b). Fig 9.7(2) shows the schematic diagram of separately
excited d.c. servomotor,

f R A
I R X :
Z Iy ; ;
l'Irl'-|
\ ] 0
® o = Speed —3
() Sepwrately excited d.c. servometer () Torque speed characteristic

Em. 8.7.

The d.c. servomobors can be controlled from armature side or from field, In field controlled
d.¢. servomotors the ratio of L/R is large i.., the time constant for field circuit is large. Due to
large time constant, the response is slow and therefore they are not commonly used. Transfer
function of fleld controlled d.c. servomotor is given in Chapter 1. The speed of the motor can be
controlled by adjusting the voltage applied to the armature. In armature controlled d.c. servomotor
the time conatant is small and hence the response is fast, The efficiency i3 better than the field
controlled motor, The transfer function of armature controlled d.c. servornotor is derived in Chapher 1.

9.4.4. Application of Servoemotors

Servomotors are widely used in radars, electromechanical actuators, computers, machine
tools, tracking and puidance system, process controllers and robots.,




number of stacks or phases, then tooth pitch is given by 360°/T, and angular displacement or
atep angle is given by 360°/nTr, For exmaple 12 pole rotor, the pitch is 360/12 = 30 and the step
angle will be 360//3 12 = 10° i ¢., rotor poles are displaced from each ather by 107,

A i C Stator
# o k] [ S i
LI o q 1 QT
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e e %
]r W e Clator

Fig. B.10. Multi stack varable reluctance stepper motor
8.7. SYNCHROS

# synchro is an electromagnetic transducer which converts the angular position of a shaft into
an electric signal. Synchros are used as detectors and encoders,

9.7.1. Synchro Transmitter

The construction of synchrotransmitter is very similar to that of a three phase alternator, The
stator is made of laminated silicon steel and carrles three phase i
star connected windings. The rotor is a rotating part, dumbbel]
shaped magnet with a single winding,

A single phase a.c. voltage is applied to the rotor through
slip rings. Let applied a.c. voltage to the rotor is

; ¢, = E,sinay 8.7)
due to this applied voltage a magnetizing current will flow in
the rotor coil. This magnetizing current produces sinusoidally
varying flux and distributed in the air gap. Because of ransformer
action voltages get induced in all stator coil which is proportional

P

to cosine of angle between stator and rotor coil axes. ‘
Now, consider the rotor of synchro transmitter isatanangle Fig. 8.11. Schematic diagram
8, then voltages ineach stator coil with respect to neutral are of synchro cransmitter
E,; = KE_sin wyf cos 8 w38}
sy = KE_ s0n oyt cos (B + 120F) ; - f9.9)
E., = KE, sin ayf cos (8 + 2407) 2100
Magnitudes of stator terminal voltages are -
Eyp = E - Epy

= KE, sin @f [cos (8 + 240°) - cos (8 + 120 = KE_ sin ayf Euﬁ s‘mH]
Ey = /3 KE, sinwyf sin® : -{9.11)



Similarly, E,. = 3 KE, sin mg sin(@+120°) {9.12)
E,, = 3 KE, sinogf sin(fi+ 240°) 9.13)
When 8 = 0, the maximum induced voltage will be E_ and E_, will be zero. This position of
the rotor is defined as electrical zero of the transmitter and is used as the reference for indicating
the angular position of the rotor.
“Thus, the input to the synchro transmitter is the angular position of the rotor shaft and the
output are the three single phase voltages which are the function of the shaft position.

8.7.2. Synchro Control Transformar

Principle of operation of synchro control transformer is same as that of synchro transmitter,
Rotor of snchro control transformer is cylindrical type. Synchro control transformer is an
electromechanical device, The combination of synchro transmitter and synchro control transformer
is used as an error detector. The funiction of error detector is to convert the difference of two shaft
positions into an electrical signal. The Fig, 9.12, shows schematic diagram of synchro error detector.

The output of synchro transmitter is connected to the stator winding of the synchro control
transformer. Therefore the same current will flow in the stator windings of synchro control transformer
but in opposite direction. The voltage across the rotor terminals of control transformer is

elf) = K, V_cos ¢ sin ayt [(2.14)
where § = angular displacement between the two rotors. When the two rotors are at an angle
90", the voltage induced in control trnsformer is 2ero. This position is known as electrical zero
position control transformer.

Synchro transmitter Synchro control tranaformer

- Fig. 9,18, 5mchro error detector
Let the transmitter rotate through an angle ‘8’ in the direction indicated and let control transformer
rotor rotates in the same direction through an angle ‘e’ Then

b=(90"-8+a) A9.15)
Fut the value of § in equation 9.14, we get
g (f) = K, V¥, sin (6 - o) sin o, ¢ -{9.16)

Frotn equation (%.16) it is clear that when two rotor shafts are not'in alignment, the rotor
voltage of control transformer is approximately a sine function of the difference between the two

shaft angles.
For small angular displacement between two rotor position -
elf) = Ky V, {8 - o) sinuy! w(917)
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BLOCK-DIAGRAM REDUCTION
10.1 INTRODUCTION

Block Diagram: Pictorial representation of functions performed by each component of a

system and that of flow of signals.

4 N
R (S) s C(s
(s) G(s) ()
Input L\ / Output
Signals
\ (Only in indicated direction) C(s)=G(s)R (S)J
Figure Single block diagram representation.
Components for Linear Time Invariant System(LTIS):
R(s C(s R(s . C(s
0 8 0, ¢ |
Input Output

(a)

Summing junction

(¢)

System
(b)

Pickoff point
(d)

Figure Components for Linear Time Invariant Systems (LTIS).




10.

11.

(" - . h
Summing Disturbance U ( S ) e
Point Control B"‘""“"’
2 Manipulated y ( e
ctuating Signal Variable
R(s) &2 %Gl@}—————+ G2(s) =>C(s)
Reference T (S) =R (S ) b (S) m (S) Controlled
Input b ( S ) Fapsest wieasi Plant Output

1#
Primary b

Feedback . dtsack Path Feedback

Signal h Element
H(s) =
Y

Figure Block Diagram Components.

Plant: A physical object to be controlled. The Plant G 2 (S ), is the controlled system, of which a

particular quantity or condition is to be controlled.

Feedback Control System (Closedloop Control System) : A system which compares output to some
reference input and keeps output as close as possible to this reference.
Open-loop Control System: Output of the system is not feedback to the system.

Control Element G (S ), also called the controller, are the components required to generate the

appropriate control signal M (S) applied to the plant.

Feedback Element H ( s ) is the component required to establish the functional relationship

between the primary feedback signal B (S) and the controlled output C (S )

Reference Input R (S ) is an external signal applied to a feedback control system in order to
command a specified action of the plant. It often represents ideal plant output behavior.

The Controlled Output C (S ) is that quantity or condition of the plant which is controlled.

Actuating Signal E (S ), also called the error or control action, is the algebraic sum consisting of the

reference input R (S) plus or minus (usually minus) the primary feedback B (s )

Manipulated Variable M ( S ) (control signal) is that quantity or condition which the control

elements G ; (S) apply to the plant G, (S )

Disturbance U (s ) is an undesired input signal which affects the value of the controlled output C (s

). It may enter the plant by summation with M (S ) or via an intermediate point, as shown in the block

diagram of the figure above.

Forward Path is the transmission path from the actuating signal E ( S) to the output C (S )
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12. Feedback Path.is the transmission path from the output C (S) to the feedback signal B (S )

13. Summing Point: A circle with a cross is the symbol that indicates a summing point. The ( + ) or (-)

sign at each arrowhead indicates whether that signal is to be added or subtracted.

14. Branch Point: A branch point is a point from which the signal from a block goes concurrently to
other blocks or summing points.

Definitions

H (S ) =Feedback transfer function.

G ( S ) H ( S ) = Open-loop transfer function.

G ( S ) =Direct transfer function = Forward transfer function.

C ( S ) R ( S ) = Closed-loop transfer function = Control ratio

C ( S ) /E ( S )E Feed-forward transfer function.

E (s

B(s)

C(s
Outpu

-

Figure

Block diagram of a closed-loop system with a feedback element.

10.2 BLOCK DIAGRAMS AND THEIR SIMPLIFICATION

Cascade (Series) Connections

R(s)

Gy(s)

Cls)=
G4(8) U () Gr(s)R(s)

Xy(s) = Xi(s)=
G(s)Ris) G5(s)G(s)R(s) _
= G(s) = Gils)
(a)
R(s) _ C(s)
— = G3(5)Ga(s) Gy (5) =
b
Figure Cascade (Series) Connection.
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Parallel Connections

- G\(s) Xi(s) = R(5)G\(s)
o
R(s) o Gy () Xa(s) = R(5)Ga(s) % C(s) = [£G(5) £ Ga(s) £ G3(s)]R(s) ~
> G (s - -
+
AX3(8) = R(5)G(s
- Gys) 3(s) = R(5)G3(s)
(@)
L5 +G,(5) £ Gy(s) £ G3(s) |l
(b)
Figure Parallel Connection.

Closed Loop Transfer Function (Feedback Connections)

R(s)"h@—-gj G(ls)_‘—"c s)
Input L —— Output

B(s)

K» 7

Figure (Repeated) Feedback connection

For the system shown in Figure 10-4, the output C ( s) and input R (s) are related as follows:
C(s)=G(s)E(s)
E(s)=R(s)-B(s)=R(s)-H(s)C(s)

Eliminating E (S) from these equations gives

C(s)=G(s)[R(s)-H(s)C(s)]

This can be written in the form

[1+6 (s)H(s)c(s) =6 (s)rR (s)
C (s G(s)

R(s :1+G(s)H(s
The Characteristic equation of the system is defined as an equation obtained by setting the

denominator polynomial of the transfer function to zero. The Characteristic equation for the above
system is

where

or

1+G (s)H (s) =0.




Block Diagram Algebra for Summing Junctions

' 2‘ Gts) o), — LiUA Gis) —;-@.—.-Gd
C=G (+R%X)
Afx) .
=+GR+GX
il Ats)
Ris) ) -:.- Clix) — Ris) + ( 66) C(s)
o . C=GR+X
T“ =G (+ R+X/G)
() Xs)
Figure Summing junctions.
Block Diagram Algebra for Branch Point
R(s5)G(s) R(s) G(s5)
= G(s) F——> >
R(s) R(5) _ R(s) . 1 Ris)
Rs) " R(s)
- G(s)
(@)
R(s) G(s) Ris) G(s)
> G(s) b——
R(s) R(s) G(s) _ Rs) ’—. R(s) G(s)
—1 G(s) - — = G(s) -
R(s) G(s) L R(s) G(s)
— Gis) /™
()
Figure Summing junctions.

Block Diagram Reduction Rules

In many practical situations, the block diagram of a Single {8ipgte Output (SISO), feedback

control system may involve several feedback loops and summing points. In principle, the block
diagram of (SISO) closed loop system, no matter how complicated it is, it can be reduced to the
standard single loop form shown in Figure 18}. The basic approach to simplify a block diagram can
be summarized in Table 1:




TABLE 10-1 Block Diagram Reduction Rules

1. | Combine all cascade blocks

2. Combine all parallel blocks

3. | Eliminate all minor (interior) feedback loops

4. | Shift summing points to left

5. | Shift takeoff points to the right

6. Repeat Steps 1 to 5 until the canonical form is obtained

TABLE 10-2. Some Basic Rules with Block Diagram Transformation
Manipulation Original Block Diagram Equivalent Block Diagram Equation
Combining Blocks in — G G Y = X
S s A !
P,
Combining Blocks in X Vel
Parallel; or Eliminating a A Y X _""" Y Y = (G £G; )X
Forward Loop E—l
Moving a pickoff point u G u —b y y=Gu
behind a block J Yy 1
. Rt = -
| 1G4 oY
Moving a pickoff point u U —————
ahead of a block y y y=Gu
y y<{Gl
, - u
Moving a summing a @D F
point behind a block 1 ]-GT—'_- Ul_ﬂ Yy _
u y u e = G ( U —Up )
—] —[g]
Moving a summing point| U __,E_,@__* uy G y
ahead of a block L y y= Gug —Uy
g —u
f.-g 9’« y
u v y= ( G1 -Gy )U

Example 1: A feedback system is transformed into a unity feedback system




l Example 2:

Reduce the following block diagrams

a4 (s) fBis) 41(s) Bals)
(a) —m=— Gils) }—smed Gyls) }—om Gals) i
011s) Bals) 04(5) _ Bals) Byls) Bzls)

reduces to—#——t G, (s} Gz s} Gyls) p—tmm— since 5 Bals) Bals) B1ls)

Rls) Els) Cls)
(b) — ) -
His)
reduCeS 10 e ——————— s since Cls) = G{s)Els
1+ GlslH(s) = G(s)[R(s) — Cls)His)]
Rls) Cls)
] Gls) Gals) =
WL_J L
—
is Bls) G ls) Cls) : RAls) Gq(51Gals) Cls)
equivalent Gy ls) TF G, (s)Hls) [T which —s=— 777 Gyls)Hls) + G, (s1Gals)
1o reduces
to
U(s) Cis)
(d) Gifs) Gz[.ﬂ &= GJ{S}
| M is)
C Hyls)
Cis)
can be rearranged Uis) Gils) G,ls) Gals) -
thus to avoid the
interlinking loops
Hng]‘
Hqls)
Gg{ﬂ
wh'inlj:h is Uts) i Gg{SﬁGg{S, Cls) Uls) GﬂSJG‘z[S'G.ﬂE} —E[S_j
equivalent V6,516 s Hals) G . 1 + GalsiGalsiHa(s)
10 + Gyls)Gals)Hq (s)
H] s) .

G. 3 ls}




l Example 3:

VEs)

LHGG I RGGH |

R(s) Gi(s) |Gy C(s)
G;1 and G are in series
H(s) =
ik Hi and H; and H3 are in
H{sT . ]
_ parallel
|y
@ | G is in series with the

feedback configuration.

B 619 |+ (—] 6396209 o
_L C(s) G3Gy
:Gl

H\(s)— Hy(s) + Hs(s)

R(S) 1+Gng(H1-H2 + Hj
£
Ris) G5(s)Ga )Gy (s) Cis)
- S = o . . e b T T |
1+ Gy{syG(s)[Hy(s) ~ Hyls) + Hyls)]
te)
l Example 5: The main problem here is the feetbrward of V3(s). Solution is to move this

pickoff point forward.




R(s) + @ Fi(a)

i (=
Gy(s) Gos) Gals) o,
Hy(s) Hs(s)
Hi(s) [
_1
r-‘][.\'
|
: da | Fats) il Gals) Cls)
(J'It-\_h (!3'5:1 T3 (;}{.\I}Ha(#)
Hyls) =
V(s o
6(5) His) |
(a)
: i Fals) 1 (r3(5) C(s)
G ()Gl - ¥ —ree
T ATl ) Gals) (= (;3{“.”!3[”
”-3(\}
Gy (s)
Hi(5) f
(b)
Yi(s 1 (Gals Cls
G () Gyls) i, —+ ] 73(5) ©
Gals) N1+ Gy(s)H(s)
()
— + Hils)
()
R(s) O (3)Gs(5) () 1 G4(s) Cl(s)
—™ . : . . - 1 =
1t Gals)Ha(s) + Gus)Ga(s)H (5) (Gz(\} )(l +G3(,\')H3(,\'))

(d)

R(s)
—_—

Gl {.ﬁ‘_] G;(?)[] + G](i)]

C(s)

[T+ Gos)Hals) + G ()G () H (3)][1 + Ga(s) Hy(5)]

(e)




l Example 6:
- H}“J <
Minor loop
C
RiYs G, (s) Eis)] G,(5) thod QL LT, e
(M ajor loop (I:tcrmediate loop
H,(5)
H (s) €
{a)
H;‘J] -
Cls
G,(5) Gg‘ Q:‘ G,(5) Gyls) 4
Gy(s) (€= Hyls)
(b)
H;y(5)
R{s) Gils) Cis)
' i { —>
GI[S) GI:"” 1+G?{SJG}!5}HN’5, G“ 5
H|1‘5}
(c)
Gils) Gy(s) (
R (s 1 + ] Cis
(5) Gi(s) Gy (5) Gi(s) Gy(s) Hy (5) 3)
i Gils) Gy(s) Hyls)
L+ G,(s) Gyls) Hy(s)
HJ [5) |
(d)
Ris) Gl{F}G;!S] Gj‘j} Gg[’jk Cls)
1+ Gy(5) Gyls) Hyfs) + Gy(5) Gy(s) Hy(s)
H(s)
le)
R(5) G,(5) G;15) Gy(5)G, () C(s)

1+ G(51G,(5) G, (5) Gy (5) H, (5) + G, (5)Gy(s) Hy (5)+ Gy(5) Gy(s) Hy (5]

(f)

Fig. 2.13 Reducing a multiple-loop system containing complex paths. (a) The original
system. (b) Rearrangement of the summing points of the intermediate and minor loops.
(c) Reduction of the equivalent intermediate loop. (d) Reduction of the equivalent minor

loop. (¢) The equivalent feedback system. () The system transfer function.
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1.18. BLoOCK DIAGRAM REPRESENTATION

S'hltcmre-:iftheﬁ-}'ztem. DII.E-E-WE determing the transfer function, then we can represent the system
by the block diagram. Block diagrams are single line diagram, that is the flow of system variables
from one bolck to another block is represented by a single line. Figure 1.66 shows the block diagram

Tepresentation of a system,
where, Ris) = input c-—ﬁ>—-—<_.f'g} O
Cis) = output Input Output

Gis) = transfer function Fig. 1.66.
Then, the system can be represented as

Fig. 1.67.

1.19. HOW TO DRAW THE BLOCK DIAGRAM

Conslder a simple R-L circuit shown in Fig. 1.68 I
Apply KVL — -;«.E.;m -
. i _ :
Vi=Ri+ Loy {1102 “oqi, 13 W
di o —
FIJ = LEI'T -.{lllnﬂ} Fig. 1.68.

' Laplace transform of equation (1.102) and (1.103) with initia] condition zern
Vils) = I{s) R + SL Ks)

Vils) = Its) (R+ SL) - {1104y
Vils) = SL its) .(1.105)

From (1.104) and (1.105)
Jols) _ sL ~{1.106)

Vils) — R+sL
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Form Fig. 1.68 1 (1107
Vym L% A 1,108)

laplace transform of equations (1.107) and (1.108)
Iz = % [Vis) = ¥ylsl _-(1.109)
Vlsh = SLIfs) L(1110)

For right hand side of equation (1.108) we use a summing point,
The cutput of the summing point is given to block and output of the block is I(5) as per equation

{1.109).
Vils) 4% Vilg) = Vyis) Wi{g) Vils) - Vuls) [ 1 ] is)
— Vils) ' i'l{,[s}

Fig. 1.69. Fig. 1.70.

Form equation (1.110) the output of block I(s) is given to another block containing the element 5L
and the output of the second block is V),

Combining the Fig. 1.70 and 1.71 we get required block diag,

Iis) vy Vile) EREE Ry i
e Qo e

e

—
Fig. 1.71. Fig. 1.72.
EXAMPLE 1.27. Draw the block diagram of series RLC "} R
circuit, where V; and V, are the input and output voitages. c= v,
Solubion : The transformed network in s-domain lsshownin
FiE.. 1?4 O _— &
Fig. 1.73
e P e B e qe—
[ .s[ \
FII:E} "{"rji]’j EE:: Ii'lll:ll:g]
e al
Fig. 1.74.
From Fig. 1.74: I} = =573 -{1.111)
1
Vels) = - 118) H1112)

vor 2.H.5. of equation (1.111), we require a summing point

Vils) = Vijg- Vol W Vi -alsh [ 1 | I K [1] Y,
%.l % B+sl El s
Valz) Vil :

Fig. 1.75. Fig. 1.76. Fig. .77, -
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Combining the Figs. 1.76 and 1.77 we get required block diag,

Vifs) Vils) -Valsh [ 0s 1] Vols)
I% T o |
Vo ! - : [

Fig. 1.78. Biock diagram of series ALD circyic

EIﬂMF'l'TE 1.28. Draw the black diagram of the circait shown in Fig. 1.79.
E W R OW
o g ;

Lo L o

V,@ﬂ.TﬁTﬁ; V.

i Fig. 1.79, :
Selution ; it = E{”T‘I'-‘}ﬂ —(1.113a)
Valt) = E—’J][a‘: () = iy i (1.1138)
) = 5 Vot -, Vit (1.113)
Ko@) = E:]—]I"z L wf1.1134)
Take the Laplace transform of sbaye equation
Iis) = %[F!.{SJ ~ Vsl (11136}
Vi) = EI[ L8} = L,(s)] (11136
Lis) = ﬁl— [Vyls) = Vy(s)] A1.113¢)
Viols) = &%Efz[sl (1.1134)

Frome equation (%)

"4y =¥ [T o,
% L |
Vq [5)

Fig. 1.80 (3

i) Lis) -5 [T7] v
_,@_ <
i)

Fig. 1.80 s

From equation (6)
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From equation {7)

Vls) + o~ Valsh - Velsh Iyfs)
] ¥ _H;H- <
Vi)

Fig. 1.80 [
From equation (8)
L [T | Viled
N
Fig. 1.80 (o
combining all the Fig. 1.4iNa), 1.80 (B, 1.80 (c) and 1.80 (e}
L5
Viis) hs) TV e - TIRLTL R v
Ry G [ LA e L :
as) iR )
Fig. 1.80 (2

EXAMPLE 1,29, Draw the block diag, for the circait shown in Fig. 1.81, where V,and {; are the
input and output variables respectively.

Solution : From Fig. 1.1 " B W
V=¥, 4 e it
i = ’—R1E {L114a) ,
T { Rz
¥ 3 ) L
. E!i- ~{1.1148) ol
v, =L %L _(L1149) Fig. 1.81.

Laplace transform of above equation
1

I5) =7 V)~ Vifel] (1.114d)

Vils) = Ry L1(s) - L ts)] {1,114}

Vils) = SLE(5)

1

L8 = 57 Vele) {1114f)

From 1.114 (), 1114 {¢) and (1.114), j, we can draw the block diagram,
Liz)
Vil = Vils) = Vil Iie) R Vilsh 1
B E2
Vi)
" Fig. 1.82.
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1.20. CLOSED LOOP CONTROL SYSTEM

A closad loop system is one in which output

is fed back into an error detector and compared with

the reference input. The feedback may be negative or positive.

Consider a closed loop system shown in Fig. 183
where,  Ris) = REEe.renceinpm
Ei5) = Actuating signal or error signal

Gis) = Parward path
Cls) = Output signal

transfer function

His) = Feedback transier funetion
B(s) = Feedback signal

From Fig, 1.83 Cls) = &{s).Eis) ~A1.115a)
Bls) = Hiz).C(s) «[1.1156)
Efs) = R(s) - Bs) AL 115¢)
Put the value of C {#) from equation (L115a)) in equation (1.115(g))
Bis} = His)-G{z) E(3)
Biz)
T = Gris)-His)
Biz)
Efs) = Open loop transfer function = G(s) His) -(1.1154)

Put the value of Efs) from equations 1.115 (¢} in 1,115 {)

C i = Gls)
Cis) = Rig)

[Riz) - Bs)]

- GlE) - Gis). Bis) «(1.115¢)

Put the value of B(s) from 1,115k in 11150

C (5} = Ris) Gis) - Gis) His). C (s)
o CE) {1+ Gls) Hie)] = Ris) )
. €O oy
Ri5) T+ Glsp B ~[1.115f)

Ci=)

H‘ﬂh = Mis) = closed loop transfer function =

G(s)
1+ G{s1 His)

If the feedback is positive, then equation {1115 (1) becomes

C{s)

Cais

1 R(s) ™ 1-Gis) H(s) _ (L115g)
From equation (1,115 () put the value of Cfs) in equation (1.115(f))

GislE(s) s
R~ TG A
" o,
Ris) = 1+ G{s)H(s) -[1.115h)
Eis) e
Fis) = Brror ratio = 1+G{s)H(s)
For positive feedback

e

Es)
Bis

1

&~ 1-Gls)H(s) -L15)



Put the value of Cis) from equation (1.115 {a)} in (1115}
Big) = His}. G{s). Eiz)

Put the value of E(s) from (1115 {c)) in above equation i
' Bls) = His). Gls) [Ris) - Bls)]

from equation (1.115])

Bis)  Gl&)H(s) 110
Ris) = 1+ HE)
Bis) TP, .. ﬂ%
7= =Pn ratio = TFE T
Rig) = Primany & HERUIR R 3o T
For positive feedback A [
Bs)  Gls)Hig) HALS
R(s) = 1-Gls) His) L e
A unity feedback control system is shown in Fig, 184,
For unity feedback control system His}=1
cl) _ .13 For negative feedback
Ris) ~ 1+Gls) i

Clg) _Gls) i pas
RG) - 1-G0) Fot positive a

1.24. SIGNAL FLOW GRAPH

b}"ﬁ.]- Mason whitch hhﬂm o
signal flow graph. This method is
very simple and does not require
oy reduction technique, Signal
flow graph is applicable to the
linear systems,

A Eig'_n_.al flow Etaph ig a
diagram which represents a get
of simultanecus equations,
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Signal flow graph consists of nodes and these nodes are connected by a directed line called
ranches. Every branch of signal flow graph having an armow, which reprsents the flow of signal,
The following terms are associated with the signal flow graph.

1.

Input node or source node : An input node is a node which has only outgoing branches. For
example x; is the input node.

2, Output node or sink node : An output nede is a node that has only one or more INCOIINE

‘3.

7

pranches.e.g. x, is the output node.
Mixed nodes : & node having incoming and outgoing branches is known as mixed nodes. For
example X, Xy, X, and x; are the mixed nodes.

. Transmittance : Trangmittance also known as transfer function, which is normally written on

the branch near the arrow. For example d;s 4yq efC.

. Borward path : Forward path is a path which originates from the input node and terminates

at the output node and along which no node i3 traversed more than ence.
For example in Fig 1.101 there are two forward paths.

L x tox, 0 x; to X, o Xz o X,

2x o tox o fox,

. l.nup:l.mpisapﬂ.ﬂ\Hmtﬂnghﬂb&saridtwminatﬁunﬂie%memﬂiemdaiMEWhEdlm

ather node 15 traversed maore than once.
For example xtoxniorn
X tox, ox,
Self loop : Tt is a path which originates and terminates on the same node. For example x, to 2,

8. Path gain : The product of the branch gains along the path is called path gain. For example the

a.

gain of the path x; ko 2, to 2 0 X, 10 X5 00 X, 08 45 g 4y f4g A5
Loap gain : The gain of the loop is knewn as loop gain. For example the gain of the loop 1, to
.rgtu]'z isﬂﬂ ﬂ:ﬂ_

10, Non-touching loops : Non touching loops having no common nodes beanch and paths. For

example the l0ops 1, to 1y t0 Xy, and X, to X, are non-touching loops.

1.25, PROPERTIES OF SIGNAL FLOW GRAPH

&
2
. §

4.
A

Signal flow graph is applicable to linear time-invariant s:.}siﬂms

The signal flow is only along the direction of arrows. |

The value of variable at each node is equal to the algebraic sum of all signals entering at
that node.

The gain of signal flow graph Is given by Mason's formula.
The signal gets multiplied by the branch gain when it travels along it.

&Thcs{gmlﬂuwgrapnb:mbemeurﬁquepmpﬁtyﬂfthewﬂem.
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-i“ 26. COMPARISON OF BLOCK DIAGRAM AND EIEHAL
o..FLOW. GRAPH METHOD

Y Ry ?
- LA ETAT E"“-'ﬁ"ih ._-.-;_x e F ;

- mﬂmhm Eﬂﬁﬂﬂﬂﬂﬂelsmpmudhym
.._:'Mpﬂﬂﬂmmﬂﬁpﬂwﬂ hrﬂ mmm&guﬂhkenﬁpmnmmm

2 {Each

=

4. Seﬂflunpdumtm : sﬁhupanhgﬂpt ]

5 |t i5 time consuming method. : *E;;uirg Toss h:m!: I::,r mmE Mason gain
B Block diagram i required at each & every mmmmmw-mmﬂwm
7. | Tramsfer function of the element is shown Tmufuhuh:dunmshmalmgﬂiehm
- B. "Feedback path is present. Feedback loops are used

1.27. CONSTRUCTION OF SIGNAL FLOW GRAPH FROM EQUATIONS
Consider the following sets of equations

Ya Sin¥ +inyy

Vo =lyplh + iyl + Iy w,

¥e =ta¥y tlpi

¥e =1y

Vs = Vesls + gy 1y
where y, is the input and g, is the output.

First of all draw the nodes. In the given example there are six nodes, From the first equation it is
clear that the y, is the sum of two signals, Simnilarly, y, is the sum of three signals and so on. Insert
the branches with proper transmittance to connact the nodes.

Step 1: Dvaw the nodes

o o o o i @ o
. i i1 ¥ ¥ e
Step 2: Drraw the SPG for equation (1)
by
o o o
L4} ;\. A W L ¥
in
Step 3: Draw the SEG for equation (2)
b b
tis
e ] ] a
L] L n i1 Mg ¥
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Step 4 : Draw 5P for equation (3)

o a o
Lt ¥s ¥
Step 5: Draw SFG for equation (4)
o & o -:u_}!i—u o
L3 ¥ \ ¥s L1 L ¥e

Step 6: Draw SFG for equation (5)

Fs
o 4] o
¥ i ¥ W ¥ .:;'a
- *“ d-'-.

_4_&—"

Step 7: Draw the complete signal flow graph with the help of above graphs.

Fig. 1.102.

1.28. SIGNAL FLOW GRAPH FOR DIFFERENTIAL EQUATIONS
Consider the following defferential equation
Y43y 5+ 2y =2 ~{1.135)
Step1: Solve the eqn 1.135 for the highest order
¥ =x-3y' -5y -2y

Step 2 : Conside: the left hana o (highest order derivative) as dependent variable and all other

terms on right hand side az independent variables.

gorstruct the branches of signal flow graph as shown in Fig, (1.103g}.

¥

Fig- 1.103 (al Fig. 1.103 (4
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Step 3 : Connect the nodes of highest order derivative to the node 9
whose order is lower than this and s o, The flow of the signal
will be from higher node to the lower crder node and
transmittance will be 1/5 as shown in Fig. 1.103 ().

Step 4 : Raverse the sign of a branch connecting the p node to the gt
nu-;le_{rf a signal flow graph without disturbing the transfer s
function,

Consider the Fig, 1.103(b), reverse the sign of the branch conmecting

¥ toy", it is necessary to reverse the sign of all remaining branches © °

entering as well as leaving the g™ node.,

similarly, reverse the sign of branch connecting " to '

¥ o

By reversing the sign, we have already reverse the sign of branch connecting y' to y and therefore
further reversal of sign is not required.
Step 5: Redraw the signal flow graph (SFG),
1 =1/ /s -1/a

o
]

Fig. 1.103 id

1.29. CONSTRUCTION OF SIGNAL FLOW GRAPH FROM BLOCK DIAGRAM

Rules 1. All variables, summing points and take off points are represented by nodes,

2. If a summing point is placed a
before a take off point in the 2
dirction of signal flow, in such (1) ()

LT {3) 2)
case represent the summing ...._4@ G, G —>»C
puinl and takeoff point by a - Efs) Eds)
single node, TG |-
3. Hasumming pointisplacedafter | Gy

a takeoff point in the direction of
signal flow, in such case, Fig. 1.104 (4
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represent the summing point and takeoff point by separate nodes connected by a branch
hawing transmithance unity. i
Consider the block diagram shown in Fig 1.104(z). the correzponding SFG is shown in Fig,
1.104 (b). -

Example 1
Obtain the transfer function of C/R of the system whose signal flow
graph is shown in Fig.1

Gy

-Gs
G4

Figure 1 Signal flow graph of example 1

There are two
forward paths: Gain
of path 1:
p1=G1Gain of path 2
. P2=G2

There are four loops with loop gains:
L1=-G1G3, L2=G1G4, L3= -G2G3, L4=
G2G4 There are no non-touching
loops.

=1+G 1G3-G1G4+G2G3-G2G4

Forward paths 1 and 2 touch all the loops. Therefore, A1= 1, A =1

C(s)PA, P, G, +G,

The transfer function T =
R(s) A 1+G,G, -G,G, +G,G, - G,G,
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Example 2
Obtain the transfer function of C(s)/R(s) of the system whose signal flow
graph is shown in Fig.2.

_H2
R(S) 1 1 G, G, G; 1 C(S)
O >0 >0 >0 49, >0 »O
Hi
-1

Figure 2 Signal flow graph of example 2

There is one forward path, whose gain is:
P1=G1G,G3 There are three loops with loop
gains:

L1=-G1GoHi, Lo=G,G3Hy, La=-

G1G,G3 There are no non-

touching loops.

A=1 -G,G,H1+G,G3H,+G;,G,G3

Forward path 1 touches all th Boops. Therefore, A1= 1.
C GGG

The transfer function T = ¢ =p1 1 _ 123
Rs) A 1-GG,H,+GG,H, +G,G,G,

Example 3
Obtain the transfer function of C(s)/R(s) of the system whose signal flow
graph is shown in Fig.3.

G6 G7

RS g, C(s) X
X >0

Figure 3 Signal flow graph of example 3

There are three forward paths.
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The gain of the forward path are:

P1=G1G2G3G4G5 P2=G1GeG4G5
P3=G1G2G7
There are four loops with loop gains:
L1=-G4H1, L2=-G2G7H2, L3=-G6G4G5H2, L4=-G2G3G4G5H2
There is one combination of Loops L1 and L2 which are nontouching
with loop gain product L1L2=G2G7H2G4H1
=1+G 4H1+G2G7H2+GeG4G5H2+G2G3G4G5H2+
G2G7H2G4H1 Forward path 1 and 2 touch all the four
loops. Therefore A1=1, A2=1.Forward path 3 is not
in touch with loop1.
Hence, A3=1+G4H1.
The transfer function T =

(1+G,H,)
Cs PA#PA,+PA, ; G G,G,G,G; +G G,G,G, +G GG,
Rs() A 1+G,H, +G,G,H, +G,G,G,H, +G,G,G,G.H,
+G,G,G,H,H,
Example 4
Find the gains  for the signal flow graph shown in Fig.4
X1 a f  Xe
O o

ignal flow graph

There are two forward paths.
The gain of the forward path

P1= acdef P2= abef

There are four loops with loop

gains: L1=- -cdg, L2=--eh,

L3= -cdei, L4=- -bei

There is one combination of Loops L1 and L2 which are non touching with
loop gain product L1L2=cdgeh
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= 1+cdg+eh+cdei+bei+cdgeh
Forward path 1 and 2 touch all the four loops. Therefore A1=1,A 2=1.
Xe B+ B cdef + abef

The transfer function T = X:l A - 1+ cg +eh+cdei+ bei+cdgeh

CHAPTER-5

Time Domain Analysis of Control Systems

When we study the analysis of the transient state and steady state response of control
system it is very essential to know a few basic terms and these are described below.

Standard Input Signals : These are also known as test input signals. The input signal is very
complex in nature, it is complex because it may be a combination of various other signals.
Thus it is very difficult to analyze characteristic performance of any system by applying these
signals. So we use test signals or standard input signals which are very easy to deal with. We
can easily analyze the characteristic performance of any system more easily as compared to
non standard input signals. Now there are various types of standard input signals and they
are written below:

Unit Impulse Signal : In the time domain it is represented by d(t). The Laplace
transformation of unit impulse function is 1 and the corresponding waveform associated with
the unit impulse function is shown below.

AD (t)

tlr
Unit Step Signal : In the time domain it is represented by u (t). The Laplace transformation of

unit step function is 1/s and the corresponding waveform associated with the unit step
function is shown below.
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0 t

Unit Ramp signal : In the time domain it is represented by r (t). The Laplace
transformation of unit ramp function is 1/s* and the corresponding waveform associated with
the unit ramp function is shown below.

tr(t)

0 t
Unit Ramp Signal
Parabolic Type Signal : In the time domain it is represented by t*/ 2. The Laplace
transformation of parabolic type of the function is 1 / s* and the corresponding
waveform associated with the parabolic type of the function is shown below.

A
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Transient Response of Control System

As the name suggests transient response of control system means changing so, this
occurs mainly after two conditions and these two conditions are written as follows-

e Condition one : Just after switching ‘on’ the system that means at the time of application of
an input signal to the system.

e Condition second : Just after any abnormal conditions. Abnormal conditions may include
sudden change in the load, short circuiting etc.

Steady State Response of Control System

Steady state occurs after the system becomes settled and at the steady system starts
working normally. Steady state response of control system is a function of input signal and
it is also called as forced response.

Now the transient state response of control system gives a clear description of how the
system functions during transient state and steady state response of control systemgives
a clear description of how the system functions during steady state. Therefore the time
analysis of both states is very essential. We will separately analyze both the types of
responses. Let us first analyze the transient response. In order to analyze the transient
response, we have some time specifications and they are written as follows:

Delay Time : This time is represented by t,. The time required by the response to reach fifty
percent of the final value for the first time, this time is known as delay time. Delay time is
clearly shown in the time response specification curve.

Rise Time : This time is represented by t.. We define rise time in two cases:

In case of under damped systems where the value of C is less than one, in this case rise time
is defined as the time required by the response to reach from zero value to hundred percent
value of final value.

In case of over damped systems where the value of C is greater than one, in this case rise
time is defined as the time required by the response to reach from ten percent value to
ninety percent value of final value.

Peak Time : This time is represented by t,. The time required by the response to reach the
peak value for the first time, this time is known as peak time. Peak time is clearly shown in the
time response specification curve.
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Settling Time : This time is represented by t.. The time required by the response to reach
and within the specified range of about (two percent to five percent) of its final value for the
first time, this time is known as settling time. Settling time is clearly shown in the time
response specification curve.

Maximum Overshoot : It is expressed (in general) in percentage of the steady state value
and it is defined as the maximum positive deviation of the response from its desired value.
Here desired value is steady state value.

Steady State Error : It can be defined as the difference between the actual output and the
desired output as time tends to infinity.

Now we are in position we to do a time response analysis of a first order system.

Transient State and Steady State Response of First Order
Control System

Let us consider the block diagram of the first order system.

1 C(sa
sT

From this block diagram we can find overall transfer function which is linear in nature. The
transfer function of the first order system is 1/((sT+1)). We are going to analyze the steady
state and transient response of control system for the following standard signal.

Unit impulse.
Unit step.
Unit ramp.

Unit impulse response : We have Laplace transform of the unit impulse is 1. Now let us give
this standard input to a first order system, we have
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Now taking the inverse Laplace transform of the above equation, we have

—H/T

T

e

c(t) =

It is clear that the steady state response of control system depends only on the time
constant ‘T and it is decaying in nature.

Unit step response : We have Laplace transform of the unit impulse is 1/s. Now let us give
this standard input to first order system, we have

1

€)= sa+sn

With the help of partial fraction, taking the inverse Laplace transform of the above equation,
we have

c(t) =1 — et7

It is clear that the time response depends only on the time constant ‘T’. In this case the
steady state error is zero by putting the limit t is tending to zero.

Unit ramp response : We have Laplace transform of the unit impulse is 1/s?>. Now let us give
this standard input to first order system, we have

1
s2(1 + sT)

c(s) =

With the help of partial fraction, taking the inverse Laplace transform of the above equation
we have

ct) =1-T+ Te t/7

On plotting the exponential function of time we have ‘T’ by putting the limit t is tending to zero.

Transient State and Steady State Response of Second Order Control
System
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Let us consider the block diagram of the second order system.

2
R(s) ¥/<_ A wh C(s)b

R —G(s) =

a s(s +2¢Wyp)

From this block diagram we can find overall transfer function which is nonlinear in nature. The
transfer function of the second order system is (w?) / (s ( s + 2w )). We are going to analyze
the transient state response of control system for the following standard signal.

Unit impulse response : We have Laplace transform of the unit impulse is 1. Now let us give
this standard input to second order system, we have

2

W

€)= s(s + 2w()

Where w is natural frequency in rad/sec and  is damping ratio.

Unit step response : We have Laplace transform of the unit impulse is 1/s. Now let us give
this standard input to first order system, we have

2

w

€)= s(s + 2w()

With the help of partial fraction, taking the inverse Laplace transform of the above equation
we have

e “Isin |wy/1 -2t + tan“#
V1-¢2

Now we will see the effect of different values of ¢ on the response. We have three types of
systems on the basis of different values of C.

c(t) =1-
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Under damped system : A system is said to be under damped system when the value of {
is less than one. In this case roots are complex in nature and the real parts are always
negative. System is asymptotically stable. Rise time is lesser than the other system with the
presence of finite overshoot.

Critically damped system : A system is said to be critically damped system when the value
of C is one. In this case roots are real in nature and the real parts are always repetitive in
nature. System is asymptotically stable. Rise time is less in this system and there is no
presence of finite overshoot.

Over damped system : A system is said to be over damped system when the value of C is
greater than one. In this case roots are real and distinct in nature and the real parts are
always negative. System is asymptotically stable. Rise time is greater than the other system
and there is no presence of finite overshoot.

Sustained Oscillations : A system is said to be sustain damped system when the value of
zeta is zero. No damping occurs in this case.

Now let us derive the expressions for rise time, peak time, maximum overshoot, settling time
and steady state error with a unit step input for second order system.

Rise time :In order to derive the expression for the rise time we have to equate the
expression for c(t) = 1. From the above we have

e “fsin |wy/1 — (2t + tan™! 1;52
v1—(2

On solving above equation we have expression for rise time equal to

c(t)y=1=1-

—14/1-¢2
T — tan lg
tr -_ -

NI

Peak Time : On differentiating the expression of c(t) we can obtain the expression for peak
time. dc(t)/ dt = 0 we have expression for peak time,

12

Maximum overshoot : Now it is clear from the figure that the maximum overshoot will occur
at peak time tp hence on putting the valye of peak time we will get maximum overshoot as

tp:

% MP = e <"/vV1-C 4100

Settling Time : Settling time is given by the expression
53



2.5. TRANSIENT RESPONSE SPECIFICATIONS OF SECOND DRDER SYSTEM

The performance of a control system are express in terms of the transient response to a unit step
input because it is easy to generate. The transient response of a control system to a unit step input
depends upan the initial conditions. Consider a second order system with unit step input and the
system initially at rest f.z, all initial conditions are zero, The following are the common transient
response characteristics,

1. Delay time (¢ )

2. Rise time (1)

3. Peak time (1)

4. Maximum overshoot (M)

5. Settling time (1)
6. Steady-state error (¢_)

pett)

.:u]w.h_T__.._: 2
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Time-Domain Analysis o 93

. Delay Time (£,) : The delay time is the time reguired for the response to reach 50% of thee final
yalue in first tme.

. Rise Time () : It is the tirme required for the response to rise from 10% to 9% of its final value
for overdamped systems and 0 to 100% for underdamped systems.

3. Peak Time {i‘P}:Thepeakﬁme is the time required for the response to reach the first peak of
the ime response or first peak overshoot,

. Maximum Ocershoot (M) : It ks the normalized difference berween the peak of the Hme
response and steady cutput. The maximum percent overshoot is defined by

Clt)-C =)

' (o)
5. Settling Time (t,) : The settling time is the time required for the response to reach ard stay
within the specified range (2% to 5%) of its final value.

. Steady State Error (e ) : It is the difference between actual output and desired cutput as time
‘¢ tends to infinity.

Maximum percent oryershoot = 10

¢, = Lim[riz)—Cit)]

55
presaion for e Timein ).

From the equation (2.230)

Ci# 1-% sin [[m,,,h—&? ]n b}

J1-E?
3

where th = tan "

Let response reaches 100% of desired wvalue, Putc () =1

1= 1—%@[{mhﬁ];+¢]
ar %ah[{mﬂﬂ}f+¢] =10

Since, ¢ 500 2 )

ﬁn[[m,JIF_ELJE +-:-] =0, or m[{m,ﬁ}rw] = sin nx

Putn=1

'[m.. J1=E? :|1:+¢ =%

Qr . = ik
g ik El
S o —
= tan " y1-8% | h
ﬁ_ i
o i, = I e ol |
4 mn‘iﬁ'":-i

4
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94 1t Automatic Control Systems

Efﬁ:p!'l:.iﬁiﬂn for Peak Time b
Since, €)= 1-F—r = 7 sin|[a, V1= Jeag]

Furumximumh-ﬂ =

d;iﬂ ﬁ [[ ﬂﬁ)”g] ﬁ+m[(m,,|’r§]:+nh:-‘h_"u5

A 2.38)
Since e 2 ()
Equation (2.38) can be writen as
. W{(ﬂnﬂ JH#]JITE‘T = ﬁ"[[wnl'_l—T]Hn]% (2.39)
Put JI-EF =sing &  E=cosy
Equation {2.39) becomes

ma[(m,,qfi:?]ew]amqp - [m 1- E}Jﬂ]
or ﬂn[[m,ﬁ)uq:]msq: ooa[ 1- tl)fﬂn]smch 0

ar Ei:\[mnﬂll'l—_ﬁ,:-]I':ﬂ
the time to various peaks
I:ﬂ’n ﬁ)fp = Tift
wheren=0,1,2 3, ..
Maximum overshoot identified by putting n =1, therefore the peak time to the first overshoot
11

= @, ]1 E"
= -0

Theﬁrstmmum {undemhmt] oocurs at =2

in
LI ~(241)

Expression for Maximum Overshoot : .'l.:l'F

Ccy=1- ji%; ﬂn[{ﬂ.ﬁ"'}nﬂ .'..qz,-;zyl

Maximuirm wmhu{rtm:sutpa&kﬁmei,u:tp
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T ; .
Put !-EF=—,—-—TmE:thahm{“1.E;l

(243
= 1-3_ - sin (10+4) LA2AT)
1-§
1 - ——— -
Since $h = tan ™! 1% then sind = .,||l_-—§2 and sin {x+ ¢} =-sing

AN

Ci)= 1+ — (ain g}
R
Cil) = 142 e

Mg = C{f) 1

¥ (2.44)
% M, = e T 100

Setthing Time - £ :

. =Bt e
£ f the transien
As shown in the Fig. 2.17, the curves for liﬁ are the envelope curves @

1
i - isF— -Thes of the
regponse for unit step input. The time constant of these enveélope curves B8 Ey- pred

i i |
decay depends upon the time corstant, The settling time for a second order aystern is approximately
four times the tme constant (1/Em, ]

s (245)
el
: i 2.45),
For overdamped system, the settling time £, becomes large be-mmeﬁgf EEEIEE@ETI sl._::.it]‘:td:mm[ 1.11:'-
the settling time is inversly proportional to the product nEE,_a.nd t, ‘dﬁtﬂfﬂ-'m by unmaﬂmdamp-ed
overshoot, thee value of § is known therefore the sattling tme can be rined
natural frequensy w.

¢ Pm—esik Mhawraliies
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Error Analysis

Inside fhis Chapter

3.1. Classification of Contral System: 3,2, Steady-State Error; 3.3, Static Error Cosfficients:
3.4, Stesdy-State Error for Different Type of Systems; 3.5. Dynamic Error Coefficients

3.1, CLASSIFICATION OF CONTROL SYSTEM
Consider the open loop transfer function

K{1+5T, 1+35T;)...
S = e 1 T )1 -@1)
In equation (31), the poles are at 5 = -uTi, 5 = -% v @ngl zeros are at s = -‘fn,
4 b

a= "1/ The equation having & term ™ in denominator, ‘m’ is the number of poles at the arigin,

A system having no pole at origin of the ‘5" plane, is sald to be type 0" {zero) system ig,
=10

lf m=14g, ', it means the system has a pole at origin of the s-plane and is said to be type
1" (one) system,

A system is called type ‘2 system if m = 2. and so on,

3.2. STEADY-S5TATE ERROR

The steady-state ervo is the difference between the input and output of the system during steady
state. For accuracy the steady state ereor should be minimum,
Consider a closed loop control system shown in Fig. 3.1

E{s) 1

ey ; K E
Rls) = TRCEAT) e T
; R
or )= oomg 62 g
The steady state error of the system is obtained by Fig. 3.1.
applying final value theorem, .
E“ = ;'_ET:_ F{t] — f‘rﬁ E-EI:F-} .{3.3_:'
. Ris)
o= $ T+ Gls)HIs) wl34)
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For unity feedback system  Hig) = 1
Lim & RI:--E-L kD)
Fes = sl .'.|_+'|:|:S}
' From the equation (3.4) or equation (3.5) it is clear that the steady state errar depends on the
input and open loop transter function.

2.3. STATIC ERRDR COEFFICIENTS

fab Static-Position Frior Constant lor Cueﬁ”icien;i K,
The steady state error is given by equation (5.4)

: Elz]
Eyy = =[='l."-§-5' 1+ Gis1HIs)

1 —
For unit step input Els} = 2 . the steady state error is given by

: 1 iz = 1
€ = f‘_';T’G*'E 1+G(s)H(s) ~ 'l+}5_ir15 Gis)H(5)
1 38)
fa T 1+Kp
K, = static position error constant = f'imnG{ST'H[E}
i Static Velocity Ervor Constant lor Cﬂeifiﬂienl}lﬁt'
e, = Limts RV {TERETHE)
Steady state error with a unit ramp input is given by [R{s) = 1/5%)
. 1 1
¢, = LS 7 TRGEAG)
Cos = E‘iﬂ- s+sCifIH(E)
: 1
= Lim SEWHE
3 A3T
Foy = -F':e

where Ky = Lints Gis)H(s) static velocity errar coefficient.

) i ion Error Constant K . . o
i ﬁSZtﬁ;{:::ETM af the system with unit parabelic input is given by

R =
5j= =5
53‘ L IRl g | —-‘—"
Cop ._{"_ﬂE'F' T2 Gla)H(s) ~ st 5* +8°G(s)H(E)
P T - {3
wlm SomHE - K

where K, = __{""{E g (3() His) = static acceleration constant.
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124 & Automatic Control System

3.4, STEADY-STATE ERROR FOR DIFFERENT TYPE OF SYSTEMS

L {a} Type Zero System with Unit Step Input
Rig) = ©

Frarm equation (3.1)

E{l+sT)1(1+35T,)...

(1+sT p{1+51,)... 3.9

-  K(14+5Ty) (14 T3)...
- Lim&(s)H{z) _ 1 st
Kp = g ) = Lim e e

Gig) His)

From equation (1.6)

; 1 g
f © TrEe T THK = "TK

Hence, for type zero system the static position error constant K, is finite,
1 Type ‘0" System with Unit Ramp Input

a3 , Kil+5T11+5T5)...
- Lims-Gis)His) _ ; 1 2 -
K, = Hms-ClIHE) - Lims TT+aT, ) (14 =T,)...
1 - N
“"F == (==
ieh Type “0° System with Linit Parabolic Input
K{l+sT{1+5T ).

Ka = ;i_'_i:r[.! EIGES}HEE:I = i[._rﬂsz {1+5T.:;}{1+5'I'ﬁ;|..-

Ep = 0

aa '5'5 H % L] |.| Esa: :}

For type “0° system, the steady state error is infinite for ramp and parabolic inputs. Hence,
the ramp and parabolic inputs are not acceptable,
Ak Type '1° Sysbem with Unil Step Input (m = 1)

K1+ 5T, {1+ 5T ).
Gle) Hisk = S TaiiesT, )

==

Limt G(s)H(s) = Lin K(1+5T,} (1+5T3)...
F—t

Ky im0 ST, ) (148 0 =

1 e g
e LR

it Type 1" System with Unit Ramp Input

i g - ! . E{1+s8T7) (1+ 8T, ).,
K, = {-_!:gs Gls}H{s) EPEE-_'_H—SHHT..HIHT‘;.L..
K, =K

s e Y | A
""‘H_Kt,:-j{“ Eﬁ_'glf:

T e d
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Dl e 1 bystens with Uit Parabelic Input

¥
; . K(1+sT 1 i145Ty)...
i} Hish _ 2 1 :
K, = Lims°G(IH(S) = Lims ST, ) (1457, )
1 —
€y = K_s = o 'r'.-3=“]

Hence, from above relations for type ‘1" system, it is clear that for type '1' system step input
and ramp inputs are acceptable and parabolic input is not acceptable.
5wl Type "2 bystem with Lnil Step loput
F{1+sT ) (14515 ).
Gls} Hiz) = i1+ 4T, {1+ 5T, ).

\ i K|:1+3T;|]|:_1+ET2_:I
Kp = LIGEEHE) oL # (1T 14800 —

1 I
ta= Tk, =0 [&@=0]

i) Type ‘2" System wilh Unit Ramp Input
= LimsGls}H(s
KE‘ ix 5—:’3 (s)H1(3)

i Kil+sTy 1 {145T; ...
= sl g 14T M1+5T, ).

= o=

i -
ey g =40 Eﬁ=|ﬂ-|

7 | —
le) Type '2° System with Unil Parebolic Input
= Limi s*Gis)H
K, = Hns'GEHE
z 1 K{l"b ET| }{1+5T1]-n

Lirg 5 =
a0 g (14T, ) (1457} ).

1 1 1
Eﬁ- - E: = f ﬁ'ﬂ_ == E
Hence, for type ‘2" system all three inpufs (sbep, ramp and parabolich are acceptable.
From Table 3.1, the diagonal elements are the finite values of steady state error,
Table 3.1.

K

[oo Faber ey P Type 0" | Type 'V Type 7
| Syatem System System
o] § . s R
Unit step input Py 0 (h
| : : a8 1
| Unit ramp input o '. T E El'
|
i | 1
| Unit parabelie input Hoagt ol I
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EEAI;'IPI.E 3.1. The open loop transfer functon of unity feedback system is given by

511
Gls) = A 0is) = i)

Determine the static crror coefficients K. K_ and K,
Solution : K. = ;[_.I'Eré G{s)H{z)

; B0
= i e = 5

50
|:1+[I.1.5;{5+]'IJ} =10

e Eﬁsﬂ{slﬁ{s] = ,L_",‘"S &

o 50
K, = Lms fi+0.15) (s+10) = U

EXAMPLE 3.2. The forward path transfer function of a unity feedback control system i
given by
S5(=*+ 25+ 100)
Glsd = A iers) (74 32 +10)

Determine the step, ramp and parabolic error coefficients. Also determine the type of the
Syatem.

: 55 =25+ 100)
1 = Lim G{s\E{s) _
Solution : Kp = HmGlslHis) - Lim s (5+5) (52 +35+10)

Kp = &= [F?‘”.'l

T
K, = Lim sG(EIH(s) - Lim g 2= +25+100)
gl =l ST s+ 55 + 354 100

Bl

Kw = oo |l =-3-:.'|
5 5{.‘?11‘254-1':"]}

R o e 2
K, = [ $°Gls)H(s) - Lim s $(s+5) (5% + 35+ 10)

=10 [K=W]
In denominator the value of m = 2. Henee, the given system is type ‘2" systermn,

EXAMPLE 3.3, The block diagram of an electronic pacemalcer is given in Fig. 3.2, Determine
the steady state error for unie ramp input when K = 400 Also, determine the value of K for
which the steady state error to a unit ramp will be 0.02.

Solution : Given that £ = 400
Pacemaker  Heart

Rk ®
(5) = 5 (=) . Km E e 5]
His) =1 Ij_5 B I

=

"R
Gis) His) = 5+ 20 Fig. 3.2.
; 1 ; Ris)
Steady state error is given by ¢ = Line T+ Cis) Hi5)
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. 1 | $+20
b = i‘fﬁs':i_lh_—ﬁ i }'ﬂs sea0)+ 4 = 005 Al
. s(s+20
Now ¢, = 0.02 (given)
1 1
LA S o
32+ 20

. 3+
002 = Lim R

o ]
002 = & a0 [K=100]  Ans

EXAiIELE 5 4. For a unity feedback control system the forward path transfer function is
given by

i 20
T s{s+2)(s7 4 254 20)

Gish

Determine the skeady state ermor of the system. When the inputs are (i) 5 (i) 5¢ (i) 3—5—.

Solution :

5
iﬂ I{E} =5 N Rfﬁ} = ;
i 5 , K3
L E .
¢,, = Lims-Efs) Lim s+ ST
i
¢ = Lins:2. 1 _ Lim Es{sﬂg{s +25+ 20)
L= 20 500 3(3+ )57 + 25+ 20)+ 20
sis+2) (55 4 254 20)
E.!-!l =)
E 5
(i) Rig) = ?
g2 1 .5 s(s+2)(s" +2s420)
I‘.’ﬁ = ’L_I:JE 5-5_1'11- = m — = F—HES SE 5{5+1:| {51+25+I[]]|+1|:|
s(542)(s* +25+20)
Em =1
3

3 a3+ (st 425420

™ Z0 P Hs42) (R4 25420420

.ﬂ'":lﬂl
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CHAPTER-6 FEEDBACK CHARACTERISTICS OF
CONTROL SYSTEM

1.32. EFFECT OF PARAMETER VARIATIONS

n control systems, the feed back reduces the error, also reduces the sensitivity of tha systern o
sarameter variations, The parameter may vary due to some change in conditrons, The vnnahc_nn
n parameter affects the performance of the system. So, it is necessary to make the system in
iensitive to such parameter variations,

1.32.4. Effect of Parameter Variations in Open Loop Contral System

The open loop control s}rﬁtemjis- ghown in Fig 1.116. Ris) _‘)@ > )
), Fig. 1.118.
R(z) = G (s) g
aF, Cis) = G(5) - R(s) w1137
Let AG(s) = Change in Gi§) due to parameber variations

AC (5} = Corrésponding change in cutput
From equation (1.137}

Cls}+ A Cls) = [G (&) + AGIs)] R (&)
Cls)+AC() =GER(s)+AG (5} Ris)

Since, Gis} Ris) = Cls)
Cis) + A Ci5) = Cls) + A &(g) Ris)
ar A Cls) = A Gis} R(s) {1.138)

Equation (1.138) gives the change in output due to parameter variations in G{#) in open loop
system.
1.32.2. Effect of Parameter Veriations in Closed Loop System

The closed loop system s shown in fig 1.117 R >0l
Cis) Gis) (1.139) i
R{s} ~ 1+G(s) His) o
His)

G(s)
o, Cls) = 1 Gis) Hm)
Gis)+ A G(s) :
= 14 G(s) + A G{s) H{s)
= Gis) + AGI3) Ris)
1+[Gls) His)+ & G(s)] His)
Since, A G(s) Hig) << [1 + Gis) H(£)], neglect A G(s) H(s)

Ris) Fig. 1.117

R({s)

Cis) + AC(3)

Gls)+AG(S) .. Gis) AGE)
)+ A0 = T e 2 = Tremae 0 Tr e HE)
| -
AR, CE = Trowae
E‘_S} & A C{_ﬂ = 'Cl:q;,l + ﬁ%‘iﬂm R{5}
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= AC) = —256)_pry {1.140)

1+ Gis) Hiz)
Equation {1.140) gives the change in output due to parameter variations i Gi$) in a closed
loop system.
Generally [Gis) H{z)] >>1
from equation (1.140) it is clear that the change in output is reduced due ko parameter variations
in Gis) by [1 + G{s) H(z)]. But in open loop syatem there is no reduction because of no feedhack.

1.32.3, Effect of Fecdback on Sensitivity

The parameters of any control system changes with the change in environment conditions.
" Also these parameters cannot be constant throughout the life, These parameter variations affects
the performance of the system. For example, the resistance of the winding of a motor changes
due 0 the change in temperature during its operation,
50, & control system should be insensitive to the parameter variations. Let Pis a EAin param-
eter that may vary due to the variations in parameters ‘R’ of the aystem. The sensitivity of the
system parameter P to the parameter R is

4 _ “hchange in R
"7 %changein P

1
x A0nR} R AR _IRR

FRdmm T L3 amr
F

5

In general ‘R’ may be the output variable and *P* may be the gain, the feedback factor ek,
Lat T{g} = Owerall transfer function

Gis) = Forward path transfer function is varying
Then, sensitivity will be

7 _ 9T(5)/ T(s) 2
5¢ 3C()/ GGs) (1.141)
For open loop system T{s) = Gis)
r  BGs)/Gls)
SG o BT S e e

G}/ Gls)
Thus, the sensitivity of open loop system is unity,

Sensitivity of closed loop system:
i el 1142
) = 15t He) -{1.142)
dTls) [1+Gis) H(s)]-1-Gls) His) i 1
e~ [1eGHET 1+ HET

Sensitivity is given by from equation (1.141)

ST = @ _.....aﬂﬂ
S 7 T(s) A Gis)
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Put the values of T{s} and & Tis)/a Gis)

Gis) 1
" Gl [1+GH
1+ Gis) His) [+ G e

1
B ———
St = TR EE (1.143)

From equation {1.143) the sensitivity is reduced due to the feedback by a factor 1/1 + Gls)
Hi#) as compared to open loop system.

Sensitivity due to the variation in Hisk:

from equation (1.142)

ate)  [eef
GHE ~ [1+GlshHis)]
o o HE 3T HE) [
W T BHE | GE_ [1+GE) His|
' 1+ Gis) His)
- Gis) His)

T e il it o P
SH ™ Ty Gls) His) el 1144)

From equation {1.143) and (1.142) it is clear that the closed loop system is more sensitive o
variations in feedback path parameters than variations in forward path variations,

4.02.4. Effect of Fredback on Dverall Gain

The overall transfer function of epen loop system shown in Fig. 1.118 is

2 i 7y
The overall transfer function of closed loop system shown in . Fig. 1,118
Fig. 1.117 is _
Ciz) Gis) —

Riz)  1+Gis) His)
For negative feedback the gain Gis) is reduced by a factor ETI;}-PE . 5o due o negative
feedback overall gain of the system reduces.

4.32.5. Effect of Feadback on Stahility
Consider the open loop, system with overall transfer function

K
Gloh = Sor

The pole is located at s =—1
Now, consider closed loop system with unity negative feedback, then overall transfer function
is given by
Cls} K
Ris)  s+(T+K)
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Huw,dnmedlmPpnlelslucaledais=—[T+HJ

dEPﬂTI‘:;J:, fmil:;r:k lu-:::’fmlsﬂw time response by adjusting the location of the poles. The stabllity
upon the location of poles, Thus we can say the feedback affects the stability. Feedback
can improve the stability or may be harmful to stability if it is not properly design and apply.

CHAPTER-7

STABILITY CONCEPT & ROOT LOCUS

5.1. CONCEPT OF STABILITY

Tl'temlruzleptufﬂtsbi]it}ris very important to analyse and design the system. A system is said to be
ata}.:r:h:_:fats;uﬂ;p:mse cannot be made to increase indefinitely by the application of a bounded input
excitation. output approaches towards infinite value for sufficlently large 6 sbem i
5aid to be unatable, 90 vk e e
A linear time invariant (LTI) system is stable if
1. The system is excited by a bounded input, the output is bounded (BIBO stability critera),
8 Inmeamm:uufthsmput,theuuqmttmdsma:dsm{me wilibrium state of the system
This iz known as asymptotic stable. o ]I
Consider the transfer function

Cls] @y 8™ +0,35™  +.08 40y

R(s) = bys™ +by 5" 4. thys 4B, A5.1)
The output is given by
Ci) = _[2 (T {f —hdr 62
1]

where g{t) = £1 Cr:-{;f:: hnpt-::he response of the system. So, a system is said torbe stable if the impulse
response approaches zero for sufficiently large time. If the impulse response spproaches infinity foe
mﬁumﬂg.r]srml} time, the system Is said to be unstable, If the impulse response approaches a mrgtant
value for sufficiently large time, the system is said to be marginally stable
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5.2. EFFECT OF LOCATION OF POLES ON STABILITY

{a) Poles on Negative Real Axis
 Conaider a simple pole at 5 = - ¢ as shown in fig; 5.1a,, the corresponding impulsc response it

given by
gl = £1G(s) = £7 LIy A5.3)

3+
As the time ‘¥ increases, the response approaches zero and the system s stable. The respanse s

shown in fig 5.1(h).
e

4oll)
-3
. : -
Ml » !
{2) Simpie plle on negative real axis () Response
Fig. &1,
(b} Pole on Positive Real Axis

Consider a system having simple pole on positive real axis at s =1, the oorresponding impulse
response is glven by

gl = £ =Kt 54

The response increases exponentially with time, hence the system is unstable. The simple pale

and response are shown in Fig, 5.2 (1) and (b).
Al A cith

fa) Ejm]:llbpﬂhmpnﬁitiw real axis (b} Response
Fig. 5.2.
[c]Pnkitﬂuﬂﬁ,gin:Cunﬁdtr:Fuluiﬂﬁgiu
git) = £“§ =K A55)

This is constant value, hence the system is marginally stable, If there are two poles at the origin,
the time response would be

= €15 = [586)
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$ L i)

| S —
¥ 5 R
= > |
() Single pole at origin (b} Response due to slngle pole
Fig. 5.3.
? I # oty
3 Rr
3 |
() Double pale at origin (B} Ienpualse respanss
Fig. 5.4.

{dl) Complex Pole in the Left Half of s-plane
Let the transfer function has a complex conjugate poles at s = — g4 joo . The time response due to
the complex conjugate poles is given by

gl K 5 K gl 2K (3 +0t)
glf) = e m =2 gt {57

When  increases g(l) approaches zero and the system is stable. The complex poles and
corresponding Hme response is shown in Fig, 5.5(s) and 5.5(b) respectively.

1"

X S
(= jo) A
X u wal
(=a = fua) .
[
) L]
Fig. 5.59.

le} Complex Poles in the Right Hal of s-plane
Suppase the system has complex conjugate poles at 5 = &+ jo. The time response is given by

-1 A A | _24(s ) =
#h = £ L—u—jﬂ}+5—u+f[ﬂ:|=£ [m‘—!ﬂ#‘:ﬂcﬂsmf ~A58)

Hence, the response increases exponentially sinuscid with time and therefore the response is
uristable. The poles and time response shown in Fig. 5.6(s) and 5.6(b) respectively.
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o + oo

= jm

fa) {t)
Fig. 5.8,

(N Pofes on jieasis

1 the system having the complex poles on ju-axis the corresponding time response would be

=1 A :"1 i 2ds
glt) = £ L + 0 + a_-j-[_u] =£ 1[;§m] = 2A cos of ~{5.9)

The respanse is marginally stable. The equation (5.9) shows the sustained oecillations of constant
amplitude, This situation will also be considered unstable,

1" (S
N
........... I .. N

| ] \

{4} Poles on imaginary axis (B Time response
Fig. 5.7.
The cverall transfer function is given by
C (s} Gis)
Ris) © 1+G(s)H (5) w[310)
The characteristic equation is 1 + G (s)H {¢) = 0. w3 11)

The necessary and suffident condition that a feedback system be stable is that all the zeros of
the characteristic equation 1+ G (s)H (5) = 0 have negative real part, Oir, in terms of poles we can say
that the necessary and sufficient condition that 2 feedback system be stable is that all the poles of
overall transfer function have negative real part,

5.3. NECESSARY BUT NOT SUFFICIENT CONDITIONS FOR STABILITY

Consider a system with characteristic equation
R+ a4k = 0 -{512)
(2) All the coefficients of the equation should have same sigm,
(b) There should be no missing term.
If above two conditions are not satisfied the system will be unstable. But if all the coefficients
hawnm&aiglandmereisnnnﬁmi:gtmmmhmmguamnteeﬂmtmesysfemwilll:eshhh. For
stability we use Routh-Hurwitz Criterion.




5.4. THE ROUTH-HURWITZ CRITERION

Consider the following characteristic palynomial
ﬂﬂ?‘z'l' ﬂl'-?u.hl Fimin +ﬂH =

{5.13)

where the coefficients a, ,....a, are all of the same sign and none is zero,
Step 1: Arrange all the coefficients of equation (5.13) in two rows

Row 1

4y a3
Bow 2 & a3
Step 2: From these two rows form a third row

Bow 1 dy dy
Riow 2 iy aq
Row 3 By by

. 1m my

where, by = ki

. -Lbo

A s

Step 3 : From second and third row, form a fourth row
Rﬂwl ﬂu ﬂz
Rﬂwz ﬂl ﬂj
Row 3 by by
Rowr 4 £ £
where,
o _1 d! ﬂa
L7 by b
_ 1 ag
57 3’1|:1 by

Step 4 : Continue this procedure of forming a new rows,

5.4.1. Statement of Routh-Hurwitz Criterion

Routh-Hurwitz criterion states that the system is stable if and only if all the elements in the fiest
column have the same algebaric sign. If all elements are not of the same sign then the number of
sign changes of the elements in first column equals the fumber of roots of the characteristic equation
in the right half of the s-plane {or equals to the number of roots with positive real parts}.

EXAMPLE 5.1, Check the stability of the system whose characteristic equation s given by

A2 6+ 5+1 =0
Solution : Obtain the array of coefflcients as follows
3t

1 f
il 2 4
g 4 1
gl 3.5
o 1
11 & 1[2 4
bis _E‘E 4‘=4, Ef'EL

33
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11 1 114 1
2 -1 _
22 n‘ * g 35[35 {I‘ !

Since, all the coefficients in the first column are of the same sign I[Posll:l'l.re} the given equation
has no roots with positive real parts. Hence, the system is stable.
EXAMPLE 5.2. Determine the stability of the system whose characteristic equation is given

by
22t 45t w3542 =0 .
Solution : g4 2 - 1 2
5 2 3
§e -2 2
51 5
50 2
" 12 1 _
1572k 377 g -13—2 2
12 1l-2 2
= e = _— =2
2‘2 a * . 5‘5 u‘

There are twio changes of sign in the first columnifrom 2 to -2 and from -2 t0 3), hence there are
two roots in the right half of s-plane. The systern is unstable.
EXAMPLE 5.3. Determine the stability of the sysbem having following characteristic equa-

ton :
2t 4 5 4587 + 29+ 150

Solution : 54 2. 5 1
FE 5. 2
5t 42 : 1
at 0.E09
gl 1
From the above Routh table :

No. of sign changes in first column = 0
No. of pales on the right ﬁ.@?ment&glm:n
Henoe, th.ES:.’EtEE'lISEFb
ENAMPLE 5.4. Chacﬁ'the;wmm'bl’iﬂm dystem having following characteristic equation.
Fr2P 3 +ds+5= il

Solution: s 1 3 5
$ 2
s# 1 5
5! &
g0 5
11 3 RN
!:I] =-EL 4:1_, b:— ‘1 D_E
1 4 111 5
B e = - 5
[ lﬁ 5‘ [ dm— {ﬁ-j—'ﬁ

From above table

No. of sign changes in first column = 2 . . [
No. of roots in right half of s-plane = 2

Hence, the system is unstable.
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204 Hautomatic Control System

EXAMPLE 5.5. A closed loop control system has the characteristic equation given by
F+di? + 35 +15=0

[nvestigate the stability using Routh-Hurwitz criterion. (R.M.L. Universify Faizabad, 2001)
Solution : = 1 - as.
5 4.5 15
gt 317
¢ 1.5

No. of sign changes in first column =0

No. of roots. in right half of s-plane = 0

Hence, system is stable.
EXAMPLE 5.5. Check the stability of the system, having following characteristic equation.
Solution: Frist+ 3P+ v541=0

1 3 1
5 B 2 1
s BT 0.83
5 0.135 1
gt -13.95
g 1

No. of sign change in first column = 2

No. of poles on right half of s-plane = 2

Henwe, system is unatable.
SMECIAL CASES

Case 1: Ifa first column term in any row is zero, but the remaining terms are not zero cr there
15 o remaining term, then multiply the ariginal equation by a factor (5 + 4) where ‘s’ is any positive
real number. The simplest value of ‘2 15 1 (take @ = 1). Consider the following example.

EXAMPLE 5.7, [nvestigate the stability
S+t e 284254 5=1)

Soluton : 5 1 2 3
g 1 2 5
5 1]
2
5l
0

Niw, multiply the characteristic equation by {3 + 1)
ErD{E+51+287 + 2824 354 5) =0
or, 884 257 + 3 + 5%+ 5 4 Bs 4 5= )

P 1 3 5 5
a0 2 4 a
g 1 1 3
#F 2 =
2 2 5
5 -7
o 1
From the above table

' No. of sign change in the first column = 2
No. of roots in the right half of s-plane = 2
Hence, system is unatable.




3.6 Rootlocus technique

3.6.1 Introduction

Ilse main aim of & control syslem Engineer is o design a control system that mects
e desired specifications.  While designing the comirol systemy, it s umpocant o
deterrmine whether his design of control system meets the desined specifications or
nut. This can be done by observing the response of the system for test signals. IT
the response does not meet the specifications, then he has o redesign the system by
changing the parameters. Moreover the desipner must also check the stability of the
sysiem. This can be found by determining the rods of the characteristics equation
| + (s} H () = 0. For higher order systems. it is a fabogions process, But applying

_Routh criterion to the characteristic equation it is possible (o determine whether the
system is stable or unstable. Bui is has certain drawhbacks.

1. It does not give sufficient information aboui relative stability of the system, that
is. the amount of overshoot and the settling time ete. Sometimes poor relative
stability may bring the system 1o the verge of instability.

2. It dees not help much in design problem in which the desigoer is required 1o
achicve the desired performance by varying one or more system pArAMCiErs.

The desived behavior of the system is specified in erms of steady state ermor, peak
over shaot, settling time, rise time cte., For & step input. T section (2. 19), we studied
{hat the Incation of closed loop system poles (reots of characteristic cguation) and the
transien! response specifications are interrelated. Tt is freguently necessary b adjust
ARE OF IMoTe Sy stern parameters in order to obiain suitable locations of ponts. Therefore
it iz worthwhile 1o determine how the roots of the characteristic equation of a given
systers migrate on the s-plane as one of the parameiers iz adjusted. The locus of
this migeation is known as root locus, Omee the locus is abtained, one can select the
poles on the root locus which meet the desired specifications and then can obtain the
eosresponding adjustable parameter. That is, by adjusting the location of closed loop
pole one can ohtain the desired specifications,

Construction Rulas

Rule 1:

The roo! focks i sveemetricol aboge e vesl axis and the number of branches eqal

ta the order of the podvnomial (Number of poles of the apen foop transfer fimetion).

The roots of the characteristic equations ace either real, imaginary or complex
conjugale or combination of the abgve; therefore the root iocos is symmetncel about
real axis. The oot locus sbove the real axis is mirter image of the root locus below
the real axis and vice versa, The number of branches of the rood locus 15 equal to the

order of the characteristic pobynomial,

Hule £

All branches of wood focws staris af oper loop poles (wien k= OF and ends af either
open foop zero or infimity fwhen & = ool The number of branchey termirating al

infenity equals In the dilference between the number of poles ard number of zevos.
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ule §:

A point on the real axis lies on the root locus if the sum of the poles and zerms on the
recd axis fo the right of the poing is an odd merber.
Consider the open loop pole and zero config-
gration as shown in Fig, 3.23. Let s; be the

test point. To check whether the (et point a;

15 an the ool locus or not, join all the poles 2

and #eros 1o this point. At this point the an- @
rles made by the lines joining p) . pa., poamd py "
with s are £sq+ 1, <8+, SEg b prand . R H—— -
Lan + my respectively, Similarly the angles : T
made by the lines jomning ., 22, 23 and =7 ane 'Eh_‘f"
Lan 21, Lo + 23, Lsn + 2 and Lay + 2 Fig. 3.23
respectively. From Fig. 3,23 we can ohgerve

that the angles made by py. oo and 2y are

i

Ssad o= £+ = Sea oo = 1B0° {3.33)
and the angle made by 22, 1y and gy are
Sn oz = Leg+ 33 = Seg ot =0 (3.34)

Angle made by zgand zlwith sq are equal and opposite (ie} £sy + 33 + Lao + 23 = 0.
Therefore it is not necessary to consider comple: poles and zeros,

jm

v
Fig. 3.24

The sum of the angles contributed by complex conjugate poles is zero. From this
we conclude the following

1. The angle contribution of all the poles and zeros on the real axis to the right of
the point is 150°.

2, The angle contribution of all the poles and zeros on the real axis to the left of
the test point is 07,




1. The angle contribution by complex comjugate poles and zeros is zero.
From Eq. £3.33) & Eq. (3.34) the angle of &{s)H (5] with the point s 15 given
by

Doy +bpa + Bon b B+ Doy P Py + P
= FEO7 4+ 1807 4 0F + 1807 + 0F + 0% + 0 40" = LB

LS0° is odd multiple of 1807 terefore s is a point on the locus,

Similarly, For flve test point =) the net angle contribution to all open loop poles
sl zeros are given by

i+ Tz o P+ D+ Doy + Pap + (B + D)
= 180° + 180° + 180" 4 0° — 180° 4+ 1" - 0% 4 07 = 3607 £ £180°(2¢ + 1)

I werefore @) 5 nol a peint on the root locus. Thus the necessary condition For defer-
muning the real axis locus is

(ri; — 7y, ) 180° = +(2q 4 1}180°

Where 7y, is the number of poles on the real axis o the rght aof the test point and
i e number of #eros on the real axis to the right of the test point. Eq- (3.25) selisfies
whgn 1y — #, must be an odd nuimber. If 2. — ny is an odd number then v, + 0
alse an odd number, Therefore we can concliede that if the total number of poles and
seros 1o the right of the test point 2y on the real axis is odd then the test poinl lies on
ey o0t lsgns,

Fxample .13, Draw the root locus for the unity feedback system with open loop
fransfer function

Els+ L=+ 3)

Bl = e oter 4

salution .
T'he three rules so far we have seen are sufficient 1o draw the root locus of the given
sySEE,

siep 1. The number of open loop poles are three. Therefore the number of branches
of the root locus are three. The plot of poles and zeros are shown in Fig. 3,23

Step 2. The three branches of the oot locus starts from the open loop poles 5 =
0, =2, —4. Ot of these three branches two branches of the oot locus termi-
nate at the two open loop zeros and one branch terminates ai infinity.

Siep 3. All the points between Dand ~ 1, -2 and —3. —d and —oc lie on the root locus
far which the swrm of open loop poles and zeros to the right of 125t peints are
1.3 and 5 respectively (all points are having odd number of poles and zeros
tar its right].
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Rule 4:

The (i — ) mood focus Branches thal proceed to infimin do 5o olorg the asymiptoles .
with auirles

24 1y 180"
_ kg4 1) i

n -t

P4 =0,1.2......(n=m=1)

Consider a test point #; at infinity, the angles made by the line joining the test point s
and the open loop poles and zeros are equal 1o each other (say &% ). The total number
of such angles s equal to rt — wn. Therelore the (otal angle made by the test point 2
wilh all open loop poles and zeros is equal to (n — m)@Y. This angle must satisfy the
angle criterion (1 — m)gf = £180°(2 + 1)

[n — m)By = (2 + 1)1E0° (3.33)
Bho— {2+ 1)180°
Py = W‘ {3.36)

where g =0,1,2,3. .. (7~ ~ 1), 5mce {# — 7] branches of the root locus tends to
infimity along the asvmplotes, the nomber of asymptodes 15 equal to n — m. Thercfore
gvanes om0 ton — e — 1.

{2g+ 11807

# {1 = m)

g=10,1,2.8..n-m =1 (3.37)

(2 + 1)1807
(number of poles — number of zeros)

gqe=01.23...n—m—-L
(3.38)

==-*I?|:1=
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Step 3.

Step 4.

Step 5.

Step 6.

All the points berween 0 and —2, —3 and —4 lie on the root locus since the
sum of poles and zeros to the right of these points is odd (1 and 3 reapactively).

The two root locus branches that proceed to infinity do so along the asymptotes
with angles

(g + 1)180°

1 = - --.1---II- e _I-
i q o ¢=10,1,2 lre—1tn )
4 111
fa4 = —----'—EEU : 21] w:r.-=1.l,1
= f0°, 27F
The centroid, the paint of intersection of the asympiotes on the real axis is
given by

o Sum of real paris of poles — Sum of real parts of zeros
A Nurmber of poles — NMumber of zeros

_(—2-3-4)-(-1) _ -8B

N 31 =

& A —k

The break away points of the root locus are the solution of L =}

ds
. k(s +1)
ClalR =3 zui + 3108+ 4
L (s 2le+ 3+ 4)
T (= + 1)
(& + Ba® 4 265 + 24)
= (%4 1)
dE _ (5+ 1){3s® + 185 + 26) — («* + 04 + 265 +24)
da (x4 1)% '

(357 + 2152 + 4ds + 26) — (&7 +95% 4 265+ 24) =0
2gF 4 1922 4 1834+ 2=10
e +9s4+1=0

The rogts are
—3 5321, R343R, 01200

The oot —3.5321 alone Jies on the root locus, Hence the break away point
15 at —3.9321.
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Rule-6

The breakaway points on which multiple roots of the characteristics equation occur of the root
locus are the solution of dk/ds =0

The complete oot locus plot is shown in Fig. 3.27.

3 T T T T |I ]

E-f- :_m el

4] .2 : :
4 2] : :
. =35321 '
E o : ;
£ SRt | —ee—— - - M- -
E ﬂ'q_-'q' =t - lﬂ 3
E =it : ;

4 : £

i

—HL : ]

= = i i i :'-*_'ilIEI i

-5 — =3 -2 ~1 ] 1 2

Real axis
Fig. 3.27

Rule T;
The angle of deparfure from an apan loop pole is given by
o= 218029 + 1)+ @y g=10,1,2...

whera @[5 et gugle contribuiion fo this pele by all other open foop poles and zeros,
Simlarly the angle of arrival o an open loop zera is given by

g = £180%(2g + 1) — g g =0,1,2......

where & is the net angle contribulion to the zevo under consideration by all ather apen
loop poles and zeros.
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Example 3,16,  Skeich the root locos for a system with open loop transfer function

k(s + 1)

Gla)H{s) = ==rs
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Solutlon .
The open loop poles are at 512 = —2 4 73 and open loop zero is at a3 = —1. That i3
n=2im=1,

Step 1. There are two root locus branches since the system has twe open loop poles,

Step 2. The two heanches of the root locus starts at open loop poles at —2 + 75, One
branch terminales at open loop 2ero (Since it has only one zero) and the other
terminates af infinity when & = 20,

Step 3. All the points on the real axis between —oo and —1 are on the root locs
branch,

Step 4. The root locus branch that terminates at infinity do so along the asymptote
with angle
1)180°
PRRREL. bk L R T e
1—1m
(2q + 1}180°
= 1807

-
Fig. 3.29

Step 5. The break away points of the root locus are the solution af% =0

_=[a® +ds+13)

¥ 84 1

b fis+ 1)(2s + 4) - {&* +4a +13)

ds 5+ 1) ™

K

1]




Bizp 6.

(26% 4+ Be+ 4] — {3° + 45+ 18) =0
s & 4 Fs— 0=}

The roots are al ¥ = —4.16 and s = 2.16.

The break sway point is al —4.18 since this point is on the root lecos but the
other root 2.16 is not on the root locos.

The angle of departure from an open loop pole is given by
=180 2+ 1)+ g =0,1,2
Forg=10
fp = T 180% + o

where ¢ is the net angle contribution at this pole due ta the other open loop
poles and zeros.

Let us consider the pole at —2 + 33,

The net angle contribution ¢ = @) — e = 108,437 — 90° = 18.43°.

The angle of department at pole p; is

dp = £180° + 18.43°
= 198.43°, 161.57°

The complete root locus plot is shown in Fig. 3.30.

o
5]
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Rule 8:

The intersection of root locus with imaginary axis can be determined using the Routh

Rule 9:

The open loop gain k { Transfer function in pole-zere form) at any poinl 5o b the root
locus s given by

I = H W5+ nill
s+ &)
_ Product of phasor lengths fram #q to apen loop poles

k=
Product of phasor lengths from s to open loop zeros

Example3.17. Skeich the root locus of a feedback system whose open loop transfer
function is given by
k

Gis)H(s) = Tt )

Solution .
Using the rules discussed so far we can sketch the root locus, The open loop poles
are al 5 = 0, —2 and —3 and there is no open loop Z2ros,

Step 1. The numbers of root locus branches are three since the number of open loop
poles are three,

Step 2. The three branches of the root locus originate from the open loop poles at
g = {1, —2 and —3 when k = 0 and all the three branches terminiate at infinity
when &k = o0,

Step 3. All the points between 0 and —2, -3 and —oc lies on the root locus for which
the sum of open loop poles and zeros to the right of the test point are | and 3

respectively.
Step 4, The three root locus branches that proceed to nfinity do so along the asymp-
totes with angles
2q 4 1)180°
A= ELE}—"E g=1012

@ = 607, 1507, 3007

Step 5, The centroid, the point of intersection of the asymptotes on the real axis is
friven by
o Sum of real part of poles — Sum of real part of Zeros
Mumber of poles — Mumber of zeros
_0-2-3-D
o 3

- K
& .-5‘-’ = ~1.667
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Step 6. The break away points of the roof locus are the solution uf% =1

k
wla + 2Ws + 3)

1+ Gis)H(s) =0

== O{a) (5] = <]

k a=n

s(e+ a4+ 3
k= —sla+2)(s+8) = =[5 + 6a® + Ga)

dk

E=—13&*+ma +8]=0

Gie)H(s) =

I

The roots ur*j-ﬁ = 0 are ~2.5485 and —0.7847 The point s = —2.5485 is
not on the root locus. Therefore the breakaway point is —0.7847 which is on
the root locus.

Jm

1." =7
3y = - 0.7864 .
Corilraid = —L667 -2
Fig. 3.1

Step 7. The intersection of the root locus with imaginary axis can be determined using
Fouth critecion. The characteristic equation 15 given by

14+ G(s)H{s) =0

k
sls+ 28 +3)
sla+2e+ 3+ k=10
S+ 557 +Bs+ k=0

14 )
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& 1 fi
&3 5 K
| (30— &)/S D
el k
(30—k5 =0
0= k< 30

a2 = /B

8 = 472,449,

jm

po
ALy

- jm
Flg. 3.32

where 5 is the point 3t which the roof locus crosses imaginary axis. The
commplete root locus is shown in Fig, 3.32.

Example 3.18.  Sketch the root locus for a unity feedback system with open loop
transfer function
i

Gl = @y es v

Solution .
The poles of the open loop transfer function are the roots of the denominator

a(s® +Bs+32) =0
=% w0

Ppa= po i E:_"'[E'E] = _Ei;_m = —4 & 44

Mark the poles with % symbel on the graph sheet.

Step |, There are three open loop poles, hence the number of branches in the root
locus are thres and mo 2eroes.
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Step 2, The three branches starts at py = 0,pe = ~4 + 74 and pa = —4 — 74 when
k = () and terminate at infinity when & = o,

Step 3. All the points on the real axis between — oo to O lie on the root locus, since
there is one pole to the right of these points.,

Step 4. The three branches that terminates at infinity do 5o along the asymptotes with

angles
’b“=w g=012...(n=m—-1)
=w q=1012
For g=0 ¢ = i = G0F
For gm1 éﬂg=3{lzﬂﬂ}=lﬁﬂ"
For g=2 ¢ﬁ=w=3ﬂﬂ"

Step 5, The asymplotes meel al a point known as centroid

__ Sum of real parts of poles - Sum of real parts of zeros
o Mumber of poles - Number of 2eros
GAnd-0 8

- = =2 BET
3 3
jm
!J
Ml ]
rI
M S 3
o
. 3
o
' - |
¥
A 60° 1
1 T " I 1 {l ] (]
-d —3’[‘—;.: =1 I 3 @
.' =
Cemmid *. -
L1
5 —.j
L]
= " ___"|.
k]
-
L]
5
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Mark the centroid on the real axis and draw the asymptotes with angles cal-
culated in step 4 using protractor.

Step 6. The break away point of root locus are the solution of 95 = 0

ke
Gl {(a) = AS=+esvagy W=l
whe koo
1+ C{a)H(#) =10
&
P 1 =
w M aErnaam "
k= —S{a'r"rvl- Ba 4 32)
ol
¥ E_ﬂ
= 3"+ 162432 =10
nemsm._ﬁfa‘ﬂ_fﬁ

The points are mot on the root locus. Therefore there is no breakaway point.
Step 7. The angle of departure ¢, of a root locus from a complex open loop pole is
gy = 1807 4+ &

when ¢ is the net angle contribution at this pole by all other open loop poles
and zero as shown in Fig. 3.34.

The angle of departure at pale pg is

dps = 180° + &
where
&= —135° — oO°
= - 225%
tan~! {3) = 457
Ppe = 1B0° — 225° = —45" dhpz = 180° — 45° = 135°
g = 00°
Similarly

Pra = =ty = —(~45%) = 45°
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Llsing protractor mark the angle of deparare of complex pole

| B

Fa a4
e
X )
" ‘I\.. [~ =
[ = 1%
L] -
[} h'\-\. _-1
. BT |

- — -
. T B = 135
0 T

= =3 _Lz —1 LT | B! =
' =1
: -
[] ——
'
= B = [—3
Hae .

[ —4

Fig. 3.3-%

Step 8. The crossing point on the imaginary axis can be foand using Routh criterionmn.

The characieristic squation is given by

1 - sl fal =
=

Lok z(sf ¢ B 4 32 =1
& e - 3Ze + k=00
A
- & L o For stability
2 8 & o 256 — k
BEG i ——  — = damd k = [}
L =T, =
d & o = 0 =k = 256
s &
When k& — 256, the root locus crosses the bmaginary axis. The auxiliary
equation is 8= b kb = 0 = Ba® + 256 = 0. .85 = g3l

The complete root locus plot i5 shown in Fig. 3.35
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Frequency-response analysis&Bode Plot

4.4, POLAR PLOT y : -
i i poa) i i of G ) versLs

£a sl mddmrﬁnt:hﬂnﬂ{.ﬁa}:saplcﬂnfth?mujgmtmie L
m;iiﬂgﬁzﬁupducmrﬂamas ‘o is varied from zero to infinity. The polar plot, therefore
umhMﬁummmmﬁ:ﬁty,muswemnﬂxpnﬁsme
e wector Mef in the G-

angle ts measured counter clockwise while negaﬁl:ﬁp&ms:;:\nh

itive real axis. The polar plot is often called requais . )
= The adwvantage in using a polar plot that it depicts the frequency Tesponse v:ha:_r.arthr_:-:ltﬁ
of a systemn over the entire frequency range in a single plot, The disadvantage 15 i
plot does not indicate the eontributions of each individual factor of the open loop tra

fumnction.

4.5. PROCEDURE TO SKETCH THE POLAR PLOT

Step 1: Determine the tranafer function G(s) of the system.
Step 2: Put 5 = join the transfer function to obtain Gijen)
Step3: At =0and o= = calculate |G{jw)|. by LimG(ju) and Lint |G fe)],
Step 4: Calculate the phase angle of Gijm) at m=”l::1m:l i = ca
by Lim .G{ju) and Lim Gljw)
Step 5: Rationalize the function Gijw} and separate the real and imaginary parts.
Step 6: Equate the imaginary part I_ [G(jo)| to zero and determine the frequencies at which plot

intersects the real axis and caluculate the value Gijm} at the poi i i
substituting the determined value of frequency in &Tei}pmsﬁimplg:gﬂﬁl.mmm“ o

Step 7: Equate the real part Re [G{ fo)| to zero and detarmine the frequencies at which plts intersects
the imaginary axis and calculate the value of Gijm) at the point of intersection by substituting
the determined value of frequency in the rationalized expression of G{fm).

Step 8: Sketch the polar plot with the help of above information,

L TYPE "ZER( SYSTEM

K
G = AT i+50)
Step 1: Put 5 = jm
K
) = 3 o) 1+ joty)
Gijes K - i—lan"m“.l",—t&n'lm?l_

) =
V1ol 1o {oT;)?
Sbep 2 : Taking the limit for the magnitude of Gijm).
Lim|Gljw)| _ Lim . s
w=pll o —+ 1 J'l_'_l:'m-iri}i \||1+{I:I}T2:|1
Lim |G{jw)| _ Lim =
| e =) - u'l1+ftﬂ"|}2 \,lll'l"{ﬂ}T; ]2
Step 3 : Taking the limit for the phase angle of Gi{j)

=1
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-1 =1 i
u—H] ‘:_G{_JE] " -rr@_i-t'[l .ri"_"m mTl-m wly =0
Limt ( jun) n‘_m  —tan "l ~tan " wl; =180 *

A = -
sof G

Step 4 : Separating the real and hmngp:;:ar}r part: e LH;;:L']"]].{]- i

GO} = 4 jwT) {1+ juTs) (L= joh) (1- jol;)

Kil-o'Tih) Kes (1 +Ty)
Glje) = 1+ 0T + 0 T,? + e’ T 1+ @ T,2 + w Ty 4|-4:||:|“']"]1‘1'1--E
Equating the real part to zero,
K (1-@*T,T,)

14 0*T® +m|i']"1=3 +0 T

1 1
— — = it
ml—Tsz or Jﬁ & m w0

e 1
The frequency at which plot intersects the imaginary axis 18 q'-ﬁ

For positive values of frequencies the polar plot intersects the imaginary axis at i = ==

== gand d@w=c=
'I|IIT'IT1
Value of G{jo) when
1
o=
]TZ

1
K {Ty + T3]
3512 :
1
T +—§-~— T' T,2
+T1T1 T1T1 ! Ty e

KT1+TE KT.l+T1
N SR v T PN R TR
A p— 2
1+-f|-.“1 T, T

1 X ]TI i} = =
Gt = T:ll+i £ and /Gljo) =90

B! K TT,
" = ———— Wl = =14qn*
& When 1 q'ﬁ Gjun) m“r’__
= e .G[:i[m};.:u -— 180"
StepE:EqmﬁnglhEmg‘inqr;rpaﬂtumm
Km{‘l‘ﬁ’i‘ﬂ" =0

1+, + @'l +0'TT;
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Eguate the imaginary part equal to zero
Ka'T,T, - K

1

1
iy = = S H=Fte
VI ;i:Tz

1
The frequency at the point of intersection on real axis is —T-Nm-rmlcuhtem&va!um'rf
1z

Giju) at this point.

1
Put 0= in equation (A}
11z

T i
Gjo) = -Kpide L p

Gljm) = =  £ZUS _ge
Step 5 : Equate the real part to zero

— k(T + T3}
w0 T + T ORT)
@ = K
For positive values of frequencies the e A
polar plot intersects the imaginary axs at o
Gijer) = 0 -~ 270" =180° > Re

Polar plot is shown in Fig. 4.2,

From the polar plot it is clear that in typ+
one system the jo term in denominator
contributes — 90° to the total phase angle. At
o = 0, the magnitude is infinity and phase
angl&—?ﬂ”.ﬂtm:a,ﬂmmawudehemmes
zero and curve comverges to origin. At low
frequency, the polar plot is asymplotic to a
line parallel to negative imaginary axis.

3. TYPE 'TWO SYSTEM

K
Gl = T
Puts-.tjm
K K
1 = i1 g = ﬂ'lﬂ[l""—lﬂ _I'MT
GO = ol (1 jol) - _a? Jie (@l < n_o

K
f 1 Hm — g
#ﬂl‘:(]mll = oD = m! HII-.I. + {_W-I-I 32
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& i =0and @m+
When =0 |Gijo)| =k Gljuw) =g

6 = - leui=0  _Gljw) =0
The coordinates of the intersection points 'A” and 0"
JIll| -—-——H—
o O s
|u K ¥t
L ﬂ*/q} > R
E.'l!? T s
T +1;
r A .
Fig. 4.1.
2. TYPE "ONE' SYSTEM
K
Gls) = T ST 5T
EI:EP 1: Put 5 = ju
_ K
S0 = T+ joty 1 7 (oTy)
K

= = 90°—tan~" oT; —tan~' wT,

) =
o w1+ (07 J1+(aT;)
E-ttperaHnglhelﬁmitﬁJ:ﬂmmpgnimdeanﬁ'w}
K
ali R T e
K
w--m,,fnmm Y1+ (T, ]|2
E-ttpEr:Tuklnglhe]inﬂﬂnrﬂ'leplmumgtenIG{m}
Lim Glo) « Lm  _9pr tan T, —tanl 0T, = -90°

L]

Lim|Gijw)| -

Lim ,Gijw) = Lim _ggo_ tan~! &l —tan~' 0T, = - 270°

o W S St
StEP‘!:EﬂPﬂIahngﬂi&malandmem}rmm
o K
CU8) = ST+ Ty (1% )
—oK(h+B) ,  jKe’TT-K)
T 0+ (P + L0 T wra (AT e & .
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Equate the imaginary part equal to zero
KT, T, — K
w+w (T + o™ + B;I-ITIITEEJ .

0

1 1
b = = Bwm=to
W YT
1
ﬂmﬁmquemyatﬂmpnintnﬁﬂﬁm::ﬂnynmrmluium—T-anea!culateﬂ'mm!ugnf
12
Gije) at this point.

1 .
Put 0 = in equation {A4)
11z

T,T. : '
G{.fm}..—ﬂﬁ-‘ﬁ.; LEU) _ e

Gljw) = = M:T
Step 5: Equate the real part to zero
- k(T + Ty) _
w4+ 0T + 5+’ L)

0= K
For positive values of frequencies the Gl = s + 5Ty
polar plot infersects the imaginary axis at

Gijon) = 0 » =20 =1B*

Polar plot is shown in Fig. 4.2,

From the polar plot it s clear that in type
one system the jo term in denominator
contributes — 80 to the total phase angle, At
o = {, the magnitude is infinity and phase
angle - 30°. At w= v, the magnitude becomes
zero and curve converges to origin. At low
frequency, the polar plot is asymplotic to a
line parallel to negative imaginary axis.

3. TYPE 'TWO SYSTEM

*> e

K
Glel = Fiae ey

Put s = jio
. K ) K
G0 = el (1+ joh) ~ _a? Jis (o) <

K
) , HF:I‘E = o=
im E':'hmll T .,'r'l + (0T, ¥

-180¢—tan ™" wl;
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; K
' : L —-_='|:|
LE'EE. |¢”m}| E u-ﬁn — 1i|'-1 + [i-ll'lTI_]:

LI- = Lo -t o
Lim 1807 —tan~ 0T, = - 180F

Lim (Gliw) = Lim  _yap_tan o7, =—27p

The presence of 5 in the denominator ST
contribubes a constant — 180° to the angle of "
Giijen] for all frequendies.

The polar plot is a smooth curve whose M
angle decreases continuously from - 180°t0 ., &

£/l o2 plot is shown in figure. e > B

From the polar plot it is clear that at
w={), ragnitude is infinity and phase angle
— 1807, at i = = magnitude is zero and at Jow

frequencies the polar is asymptotic to a line Je e
paralle] to negative real axis, e

BODE PLOT

4.10, BODE PLOT E

Bode plotis 2 graphical representation of the transfer function for determining the stability of the
control system. Bode plot consists of twi separate plots. One is a plot of the logarithm of the magnitude
of a sinuspidal transfer function, the other is a plot of the phase angle, both pluts are plotted against
the frequency. The curves are drawn on semilog graph paper, using the log scale for frequency and
linear scale for magnitude (in decibles) or phase angle (in degrees). The magnitude is represented in
decibles. Thus, Bode plot consists of

(i} 20log,, |Gl V. loge.
(E) Phase shift 1V, loge
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logpp—+

M=l

= B & B

N=3

SE-

Case 3: s) =5
Put 8 = fi
Gljea) = juo
- M =200, 1 Gljesy | = 20 log,, o
sl i) =+ 07

The plot M V, log,, @ is 4 straight line having a slape of 55 +2dh/ diec. =
+ 20 db/dec. and angular phase shift of + 9. + )/

" 1 8 n
Case d: Gsh = 1057 % —+ logy g
Put 5 = (jm} 20

: 1
GILI{#} = W 7}

- 1
| G | =m

é‘f ot
:

i
20 |Gy | = 20 B -
e lﬂﬂm[ 1+w’T? ] (B
ey Fig. 4.22.
a Iﬂll:rgm 1 "'En ].l:lEm 1+I.IJIT? g
= _m].ﬂg]u. '|||1+m=T= e l%‘lﬂ I. = ﬂ

Put the different values of o, we will get | Gljw)| consider following two cases.
(@) ForwT <<1 (very low frequencies)

~20logy V1+@T? = ~20log,, 41 =0
M:ﬂfﬂ{{ﬂT{{IWNE%
it} For @T »=1 (very high frequencies)

~Nlogy Vi+w T = —20log,, Jo'T?

== 20 logy, 0T for o == 1/T

)



The main advantage of using Bode plot 18 that multiplication of magnitudes can be converted
nto addition.
Consider open loop mansfer function of a closed loop control system
EQl +5Tn}{1+5T_b':|m.
Hig) =
Gle) Ht) (14T (15T )oens
Put 5 = jty

o K14 0T, ) (1 T, ) o
Gjo) H () = T (1 juoTy ) (14 0Ty ) o

20log, | Gl Hijo! ;[zﬂlagﬁ+zu1ugJ1+m1r1, + Wlog 1+ T |1

-{ll}i!‘-l'1-|:||;m+ll'lllu:||_.;,,Ilm&m-’]‘,E +20log 41 +m1]'?] i)

Hence, in order to get | Glju) H (o)l we will have to cbtain the individual plots and adding
individual components, the resultant can be ohtained. Suppese, His) = 1.

Case 1. The Gain K
Gls) =K
Put 5 = fu
Glju) =K
Wlagyy| Glja ! = 20logygK A1)
Phase angle § = ,G{joo) = 0 &2
meequalil:nrls{4.1]arui{11-.1}{tisc‘t¢arﬂ1att1wnmglﬁmdn ¥
is independent of loggmand phase angle always zero. The plots Td"" T
are shown in Fig, (£200. b AW ogye K
Case 2t Gls) = —!ﬁr i
i logym -+
Put s = (™ (9h
1
= - +90
Giju) W ,,L
1 ‘E r
20 lagy, | Gljw) =1Dh}gm[_||:ﬂﬂ'_ﬂ é-w
= 20 logyq (o™ logye —+
= =10 N log,, (o) ()
Fig. 4.20.

where W N =123 e

The plotM Vs lngmmisast'a.tghtlhre. ForW=1 &Elinehasaﬁlapenf+iﬂdh£dmdeudmgle
— 40", Fﬂ:‘NIE,.ﬂ'lESlﬂpEﬂf&Hlimw111hﬂ—MdedEMEmﬂmgkwmm-lWﬂﬂmm



Hence, M Vs log,, @ has two parts
{f) Ome part having M = 0 for << 1/T
|

{if) In other part M varies as a straight line with slope of - 20 db/decade for w>> ¢

W = —.:‘: is called break frequency or comer frequency

M =20 log,, 0T =-20{log,; @+ log;,T)
= — 20 logy, @ + 20 log,, 1/T

ko Zero
0 = =20 log,, & + 20 log,, 1/T

w =1/T is called break frequency.

a m=1/T by iy

Cormer

i I‘I:f, frequency 1/T

] e

| logygm -+ E o1

=20t =20dby decade

Fig. 4.23.

Case 5 Gis) = {1+ 5T)
Put i =j-l;|:|
Gijen} = (1+ joT)

| Glfo)] = 1+ T"

20 lﬂg-m 1":‘&'&'}' = Eﬂlﬂgm 'I||-.|.'|"'I:i:|-2"].'1
{1 Whenol <<
M = 0log,, ¥1 =0db

(i) When wl >>1

i

1
= 20 logyy 0 —20 logyy T
Equate the above equation to zero
1.
0 = 20 log, - 20 gy, =

@ = % corner frequency.

4.3
The above two parts of the graph intersect 0 dh axis is determined by equating the eg” (4.3]
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Thus, the two parts of the graph intersects the ‘¥ db

. 1
axis at 0= . The second part is a straight line having the ~ +20 +20db/ decade
E-lDPEﬂ-f+2ﬂdh‘deﬂdE. 'T
Phase Angle Plot M 0
L (db) w=1fT . logpm -+
b= G0 =tan @
{:]Atvew]nwﬂequmdmmTiﬂver}rwqrm;ﬂ -0 ]
$ = tan {) = 0°
(i) AtwT=1 il
$ = tan~1] = 45°
(it} At very high frequencies

¢ = tar {us) = 90°
Thus, the value of ¢ gradually changes from 07 to 90°
as  increases from 0 to very high vahoes,
Case 6 : General second order Eystem

DJ'IH
E = -
&) e + 28w, 5+ w5y s i)
Ful 5 = o Fig. 4.24.
wle w 2
G = =
&) = (o) + 2w, (jo)+wd, -0+ 2o wiw,’
" 1
Gls) = . =
@~ +fA00 - (@) o0
w, ) o,
! 1 o 1 i
Iﬂ ]'ﬂglﬂ IGLHH}I = m]n-g]ﬂ' 7 = _IU]DEIU 1—[—) } +-|1;1[n-1_]
L P T A% ©n
iy ] l'.l:ll.I
@
Suppose E =
20 logyy 1G] | = M =—30log,, f(1-4)* + abhé
Caonsider the two cases

,
T —
1. w==1 o, EC |

M = -.'i'_ﬂlngm ﬂq =ﬂ d.h._

00 A
I F.E"'"—
2ou=xl @, =] 1

M = ~20log, () =— 20 logy, #* = - 40 log,, u
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S, it is a straight line having slope of ~ 40 db/dec. and passing through the point u.
Therefore, the asymptotic plot consists of
(i} M=0 nesl
(i) M =— 40 log,wu =]

'hase Angle Flot

,,
=

1I:|E]un!

M (dby dec) —

3

: o B
_ _Gljw) = ~tan 'lii—z
{:’:I For small value of u, 22 is small
& = - tan™ 2Eu fiz)
{:i} Fm‘ large value of u, Ty |
¢ = 'I-I'.B:I.'I-:I ‘2'5'

H

(i) Whenwu=1
& = tan o =00" E

nitial Slope of Bode Plot
K
Let Gis) His) = 5
Put 5 =_I|={[I

40 div e

3

:

=

Loy 00—

:

:

K ) (8
Fig. 4.25.

Glfe) Hije) = 7@
20 log,, | Gljes) Hija)| = 201y, Er'ﬂ%! = 20 log,, K— 20 N log,» . (44)

1. For N={ {Type zero system)

20 o, | Gijieo) H (jen) | = 20 logy K-
This is a straight line. The graph is shown in Fig, 4.26.
2. For N =1' {type one system)

Put N =1 in equation (4.4}

2logy §Gliw) H (ju) | = 20 log,, K — 20 log, 0 @
Intersection with 0 db axis s

0 = 20 logy, K - 20 log,;® Midb) 20 b bog, K

it K=o
locate i = Kunﬂdhmsan:lamuspﬂmtdmwnhne 0 l

of — 20 db/decade produce it till it intersect the y-axis
that will be the starting point on Bode plot. Fig. 4.26.
3. For N =2 (type two system)
Put N =2 in equaticon {24)
20 log,, | Gljw) Hju) | = 20 log,, K- 20. 2 log, ©
= 20 bog, K — 40 log,, @

Irtersection with 0 db axia
0 = 20Togyy K~ 40 log, @

b0 —
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20 logy, K = 40 log;j, o
20 logyy K = 20 log;, o
w =K

we= JE

Hence, graph intersect the 0 db axis at m= i . Locate o= K on 0 db axis and draw a line ~ 40
db/dec, and procduce it to the y-axis. Graph having the slope of - 40 db /decade is shown in Fig, 4.27.

. b/ dee. 'r 40 b/ dec.
= =
- . i 3 ""-‘.h :
i el Mazare oo
bogyp e =+ = w=AE logo-
Fig. 4.27. ;
_ Tableds. |
_ Type of the \ - Initial Slope "~ Intesection with
0 0 db/decade Parallel to 0 axis
1 - 20 db/dec. - =K
2 =40 db/dec. = JK
3 — 60 db/dex. = K3
N —20M db/dec. KI/N :
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4.12. PROCEDURE FOR DRAWING THE BODE PLOTS

Consider the transfer functon
El+5T 0 {1+5T) veeenn
G = { M1+5T) _ A7)
) AN
ey 2) (2]
where N i the number of poles at the origin Le. N defines the type of system.
For type zero system K = K,
For type one system K = K,
For type two systern K = K
In above transfer function put s =
— E{1+ joT, ) (1+ feTy])..... A1.3)

" (ol (1+ foT ) (14 T, ).... [1+ 2w/, )+ (jo/o,)?]
20 logy, | Gljm) | = 20log K + 201og 1+ 0T, + 20log 14+ 0°T,% +....—20Nlog o

L]

; = -
—-20log 1,|'l+m-=T,= — 20bog 1+ 0°T,% —20log J[l-[ﬁ'i-] ] +4E_F[%] o {2.9)

Phase anghe
£G(jw) = tan™ o, +tan~'wT, + .. N{90F) - tan 1T, - tan 20T, .... tan~? [m] (4.1

Step 1:
Step 21

Step 31

Step 4:

Step 5

2Tt

1 dentify the comer frequency.
Diraw the asymphotic magnitude plot, The slope will change at each corner frequancy by
+ 20 db / dec. for zero and - 20 db'/ dec for pole. For complex conjugate pole and zero the
slope will change by 5 40 db/ decade,
(i) 5:11-'ul Eype zero system draw a line upto fiest (lowest) comer frequency having 0 db dec,
ope.
{if} For type one systemn draw a line having slope - 20 db/ dec. upto o = K. Mark first
(lowrest) corner frequency,
(i) For type two system draw the line having slope — 40 db/ dec. upto o=,k and so0n,
Mark first comer frequency.
Drraw a line upto second corner frequency by adding the slope of next pole or zero B the
previous shope and 5o on.,
Calculate phase angle for different values of w from the equation (4.10) and join all points,
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4.13. PHASE MARGIN & GAIN MARGIN

Megative gain margin

T 2 Galn croasoves s 1 Gain crossever
Gl 3 Ty Lo H
db T I_P-:-ﬁﬁ-.-eﬁ.m. Idil @ 3
N : 1, * : [
1 1 i :
: : : i
1 L Fhase . Y :
T :1 ! crossover 4 . !
T 2 frequency G T
i s ~180° -
Politive Megative
phase margin phase
Erequency margin
fal Sheble syslem (b} Unstrble system
Fig. 4.28,

Positive gain margin means the system is stable and negative gain margin means the system is
unstable, For minimum phase system both phase margin and gain margin must be positive for the
syster tor be stable.

The point at which the magnitude curve erosses the 0 db line is the gain coossover frequency.
The phase crossover frequency is the point wherne the phase cumre coosses the 160° line.

Crain Margin : Gain margin is defined as the margin in gain allowable by which gain can be
increased til system reaches on the verge of instability, Mathematically gain margin is defined
as the reciprocal of the magnitude of the Giio) H{jm) at phase cross over frequency.

1
S = G R0l -,

wheare W = phase crossover frequency.
Generally, G.M. is expressad im decibels

1
s Indecibels GubL = 20 log G o) Hijol
-II “‘_'-'q

. o G.M. = =20 log,, 1G( fum) iT-IE;‘Ia;n}lIMHﬂﬂ_E

Phase Margin : For gain the additional phase lag can be introduced without affecting the
magnitude plot, Therefore, phase margin can be defined as the amount of additional phace lag
which can be introduced in the system till systemn reaches on the verge of instability is called as
phase margin (F.M.). Mathematically phase margin can be defined as

P.M. = [L‘G{;'m? H{jul, ., ] = [=180%)
PM. = 1807 + S5 /) H{fm}L :

where .. = Gain crossover frequency.
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5.15. NYQUIST CRITERION

The characteristic equation is given by
Dis) =1+ Gls) H) L A5.24)

The zeros of DNs) are the toots of the characteristic equation, For a feedback system the necessary
and sufficient condition is that all zerca of 1 + G(s) H(s) that is the roats of the characteristic equation
must have negative real part i.¢, they must lie in the left half of s-plane. In order to determine the
presence of zeros in right half of s-plane we choose a contour as shown in Fig. 5.38 called Nyquist
contour. Let there are ‘2 zeros and ‘P poles in the right half of s-plane . If this contour is mapped in
Dis) plane as I, then I enclosesthe origin N times (where N = Z-F) in clockwise. Hence the system
is unstable because the dockwise encirclement is possible only when there are zeros of D{3) in right
half of s-plane.

A feedback system (close loop system) is stable if and only if there is v zeres of Dis) in the right
half of s-plane, ie. £=1

N=-F
Therefore, for a closed loop system to be stable, the number of counter clockwise encirclement

of the origin of D(s) plane by T, should equal the number v
of right half s-plane poles of D(s) which are the poles of T Ditlane
open loop transfer function G{z) His). .
Since Dis) =1 +Gls) His) I‘, e [ py=pariour
or Gle) Hig) =Di) -1 | sl

The contour F; in Dis) plane can be trapped in Gis) r}hh »

HIs) plane, T, by shifting horizontally to the left by one  Tgy=contour
unit. Thus the encirclement of the origin by the contour Ty Fig- 5.41.

iz equivalent to the encirclement of the point (-14j0) by the contour [ as shown in Fig. 3.39,

Iin most single loop feedback system Gis) His) has no poles in the right half plane Le, = 0 then
closed loop system is stable if N =P =10.

%o, we can say that A closed loop system with P = 0 is stable if the net encirclement of the arigin
of Dis) plane by I, contour is zero,

Now, we can state the Nyquist stability criterion as follows:

A feedback system or closed loop system s stable if the contour Tz, of the open loop
transfer function G(s) His) corresponding to the Nyquist contour in the s-plane encircles the
point {-1 + [0} in counterclockwise direction and the number of counterclockwise
encirclements about the (=1 + j0) equals the number of poles of G{z) H{z) in the right half of
s-plane ie., with positive real parts. ,

I common case of open loop stable system, the closed loop system is stable if the contour
Iy Of GI5) His) does not pass through or does notencircle (=1 + j0) point, i.c., net encirclement

5 TErO.
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5.16. EEl"-.lEﬂﬂL WHE’i’HUﬂTIEH RULES OF THE NYQUNST PATH
Consider the Fig. 5.37 '

e Lo S 8 Py g eyogeaepe— ——py; e g Tﬂblt EII- ________
Path ab _ s < i < i s B L) (55
Fath be 5= Lim (joo, +Pel®) B 565 90° . 45.26)
Fath ¢ d 8 = ji [ A 4527
Path def s=£’iﬂiﬂe~"“‘ P sas W - A5.28)
Path fg 5 =jo lmeme—m, 4529 :

| Pathgh 5= Lim (fu, +Pel®) B R R A530) |

| Pathhi &= fio ~th S 050 A5 |

! ; z |

| Pathija 5= Lim Bel - 9F <8 <90° {5.32) |

Step 1 : Check Gis) for poles on jo axis and at the origin.
Step 2 1 Using equation (5.25) to equation (5.27) sketch the image of the path a - 4 in the G{s)-plane.
If there are no poles on fio axis equation (5.26) need not be emploved.
Step 3: Draw the mirror image about the real axis of the sketch resulting from
step 2, .
Step 4 : Use equation (5.28) plot the image of path def. This path at infinity usually plot into a pdint
in the G{s) -plane.
Step 5 : Use equation (5.32) plot the image of path fjz (pole at origin)
Step 6 : Connect all curves drawn into the previous steps.
SHliRELE 5.44. Determine the closed loop stability of a control system whose open loop
transfer funchion is
K o
() His) = Y FY5y) {Type "1’ system)
Solution : Given that

K
Gls) Hig) = samy

Put & =
K
Gljen) Hijen) = To{1+ joT) -{5.33)
Rationalizing the equation (5.33) and separating into real and imaginary parts,
> K
Gl Hijo) = =TT & a1+ @<T?) i

Lim IG(H () o o
i{ﬂ] {G{W}H{jm]' = = e
Lin IG(w)H(ju) _ g

Lim , Gljw)H{jw) - _ g
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+m b splane )] Gi#)H(s)-plane

: ")} % Re 11:‘:0 h'?} W p
18
a e
- d L
Lage

Fig. 5.42. Nyquist plot

The polar plot will lle in third quadrant.

The Nyquist plot is shown in Fig. 542, The part for 0 < @ < + = is drawn (1) (E]n_a_nd for —== < i
< () is shown by the point (2). (3} which is the mirror image of (1), 1:2_]. IThE.- gnu-:m:ular detour
around the origin in s-plane is mapped inte a semicircular path of infinite radius representing a
change of phase from + m/2 to -1/2

As the point (-1 + jo} is not encircled by the plot, N =10

N=0 P=0
N =Z-F n Z=0 ,

The number of zevos or Toots of the characteristic equation with positive real part is nil and
hence the closed loop system is skable.

EXAMPLE 5.45. Sketch the Nyquist plot and determine the stability of a unity feedback control
system.

K
Gis) = Aasl 1+515) (Type O system)
Solution : Given that ;

K
Gis) His) = AiaTyi+sly)

Fut 3 =jw
_ ; K
o) Hijo) = T3 7T, (T+ o) %)
K
|Glje Hjo) | = i it JirarTy ~{5.36)
Gljo)H{jo) = - tan! @l -t o, .{5:37)

.H?E 1G{fleo) H{joo)l _ g
Lim Gl jew)H{jo) = p
ﬂlﬂl{j{ﬂ}H[Iﬂ]' =1

lm AO{jwlH(jo) = _ 1pp°
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Rationalize the equation (5.35) and separate the real and imaginary parts.

K Koo' . w(f+TK
(T RTNToTy) = [+l (+0'h) | (LreiTyd) (L+wiTy) i)
Equﬂlﬂﬂﬂrﬂiparthnam,weget
1
*=
G H(ful KI‘]TE
Eiw T|T; =Ti:‘|" !
an "?'.'II"r
H'IH“H, ST
\ Pl
; 4 k.4
1 Y
. | I '!'i R II*ﬁ] "‘-,' g \' m:Lu
i <1hr | L W 4
.-'J K iTi'. ir'. f ? :
B 54T, 'I,i.."; :

The plot of G{ja} Hijew) is shown in Fig, 5.43, The infinite semicircular arc of the Nyquist contour
maps into origin, As'the point (-1 + fo} is not encircled by the plot

; N =0

P=0

Z=0

Hence, the system i3 stable,
CEAMPLE G468 Using Nyquist criterion, determine the stability of the faedback system which
has the following open loop transfer function,

K
Gish His) = —s‘il+ﬂ‘] (Type ‘2" system)
Solution : Given that

K
6 HE) = o)

&

Put 5 = MO
_ " K
G{jea) Hiju) = m --(5.39)
Ratipnalizing the equation {5.39) and separating the real and imaginary part .
. : K K
Gljee) Hiju) = —w'{1+w’T) & ol 1+@*T) Lo 30

The Nyquist diagram is shown in the Fig, (542). Because of the double pole at 5 = 0, a small
semicircular detour at the origin should be made, '
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Fig. 5.449.
The paint (- 1 + ji} is encircled twice, Henca N =2
P=0
& =2
Hence, the system is unstable.
EXAMPLE 5.47. Use Nyquist criterion, determine whether the closed loop system having the
following open loop transfer function is stable or not.

1
Gis) Hls) = S50 {+s)

Solution : Given that

1
Gish His) = Siivze(i+9)

Puts = jo
i i . 541
Gijoo) Hij) = Too{T¥ 2w} (1+ ) (541)
- ]‘_
A
i —-3 Rz _lw 1+.|i:l ~H
A n-:}.ﬁ?
Fig. 5.45, :
Rationalizing the equation (5.41) and separate the real and imaginary part.
= iy 1-24° Bid)
Glje) Hio) = 1 iahi+0?) | oll+de? ) (1+07) =
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CHAPTER-9

STATAE VARIABLE ANALYSIS

DL L L IR ———

The procedure for determining the state of a system is called state variable analysis. The state of 2
dynamic system is the smallest set of variables such that the knowledge of these variables at ¢ = ¢
with the knowledge of the input for ¢ 2 £, complately determines the behaviour of the system for any
time ¢ 2 £, This set of variables is called state variables,

In earlier chapters we studied the linear system by transfer function, block diagram ete, The
transfer function has some drawbacks eg. transfer function is only defined under zero inftial
conditions and also it s applicable to linear time invariant systems. Therefore due o these Limitation
state variable approach is developed. This technique can bé used for analysis and design of linear
and non-linear, time invariant or Hime variant and multi input multi-output systems.** The state
apace analysis involves the description of the system in terms of I order differential equations by
selecting suitable state variables, the first order derivatives are arranged on left hand side and on /
right hand side the terms are free from derivatives. The state space techniques have many advantages
(Given In next article f.¢, 8.2).

: s e s o T R R S P T T SR e i Pl A D I VAT
8.2, ADVANTAGES OF STATE SPACE TECHNIGUES "~
This technique has the following advantages,

* If the characteristic of a system does not change with mmn the system 14 said {0 be time invariant.

™ f systern s said o be a single variable system if and ondy If it has only one input tereinal and only one
cnatput berminal. A system s said to be multivariable system if and only if it has more thian ane input terminal
or maore than one output ferminal.
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. This approach can be applied to linear or nonlinear, time variant or tirme invariant systems.

. It is easier to apply where the Laplace transform cannot be applied

3. n™ order differential equations can be expressed as ‘' equation of first order whose solutions
Bre 2asiet.

4. Tt is a time domain approach.

5. This method is suitable for digital computer computation because this 5 a time domain
approach.

6. The systen can be designed for optimal Enndmummmrﬁpecttugwmpﬂfﬂmmmdm

Pl s

ok

8.3, SOME IMFHHTHNT IJEFIHI'I'IIJHE

State : The state of & system at any Hme ‘) tst}wminunumaemfnmnherarl,xi, . 4 whathaiung
with the input to the system for time £ £ is sufficient to determine mehﬂhmnmufﬂ'resj.rslem for
all £ 2 £y In other words, the state of a system represents the minimurn amount of information that
we need to know about a systemn at “," such that its future behaviour can be determined without
reference to the input before §,'. The state can also be defined as the state of a system at time f is the
amount of information at #, that, together with input ity =) determines the unique behaviour of
the system for all ¢ 2 t, By the behaviour of the system, we mean all responses, ihcluding the state of
the system. If the system is a nebtwork we mean the voltage and current of every branch of the
network.

Congsider the network shown it Fig. 8.1 if the inltial current A e T

through the inductor and initial voltage across the capacitor are B L T d

known, then for any driving voltage the behaviour of the netwrok 4{:";:]:' o= b

can be determined. Hence, the inductor current and capacitor ™y

voltage can be considered as the state of the network. ,L
State Variables : The definition is given in Article 8.1 Fig. 8.1.

State Vector : If we need n variables to completely describe
the behaviour of a given system, then these n state vanables nm}rb&:}i;ms:ldemd. as i component of
a vector x. Such a vector is called state vector, A state vector is thus a vector which determines
uniquely the system state x{f) for any time = , once the stabe at £ = £; is given and the input u(t) for
f 2 &, is specified.

Eme space : The n-dimensional space whose coordinate axes consists of the x, axis, x; axis ..
= anis 15 called state space. Any state can be represented by a paint in the state space.

8.4. STATE SPACE REPRESENTATION

B.4.1. State Space Representation For Electrical Network (Physical Variable Form]

Consider an BELC network shown in Fig. 8.2, Let, the current at time ! = 0 be ({0} and capacitor
voltage at time ¢ = 0 be V_(0) Thus, the state of the network at time TE

f = 0 is specified by the inductor current and capacitor voltage. ko= T
Hence, the pair ; {09, V, (0} is called the initial stabe of the network. £ e
Similarly at time ‘', the pair {,(f), V. (f) is called the state of the T i
network at ‘t'. The variable {; and V, are called state variables of
the network. Fig. B.2.
Apply KVL
Rig +L ﬁ: +¥, =0 (8.1
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Also, iy =i = O ~{B.2)
di E 1

Fromequation (1) Sk =~Ti -7V . A8
‘% = %EL ABAY

Equations of this form are called state equations. In such equations all the variables present are
state variables.

Equations {#.3) and (84) can be written in matrix form as

Aty _E_1irg,
dt L L
£ A v
&= LT 9L
_E 1
iy L
let Aty A { ] and A =
Lvﬂ 1 0
c
then equation {8.5) can be writhen as
d
r {m = A xii)
or () = A xif)
In the linear time-invariant systems, the general form of state equations are
) = Axif)+ B ulf) {BE)
y(t) = C of) + D uif) --(8.7)

These equations are vector differential equations where “x” is the #-dimensional state vector
i = n-dimensional oufput vector
1 = r-dimensional control vector or input vector
A = n = n system matrix
B = n x r control matrix
€ = n x 1 output matrix
In some cases there 1s no direct connection between input and cutput so I 2(8) will not be there.

Y 592 wB.8)
£ |-'5'51 " R R— e [ ; : i
i'-z e Mgy eeeees Hpg || Xg 31 a‘u b‘lr e
.'-I-.'"S (= 1 g : .; r“mgl:l
" ; i b b :
:'-:n -u'u"‘ #-'l'l'_ _z..u" ol Ar ‘H“‘
!I"!I -C]I C‘LE Ejn .I"_
o L -‘flz i
¥u i R ——. iy |
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B.4.2. State Space Representation of mth Order Differential Equations
Consider the following examples.

{a) For nth Order Differential Equation
EXAMPLE 8.1. A system is described by the differential equation

Ly LY W
8 +ﬁdt"' +11 ar +10y = B wit)
where y is the output and » is the input to the system. Obtain stabe space representation of the
aystem. : {R.M.L., University, Faizabad, 2003)
Solution : Select the state variables as . 3
X =y x=Yandx;= ¥ then
S
1%
Xy = Bull) =10 %, - 11x, - 6,
The last equation is obtained from the given equation.

2y "0 1 0]i% 0 .
=l 00 1| |F |+ |0 ~AB8.11)
£ (10 11 -6[[¥] |8

Compare equation (8.11) with equation (B.6) we get

0 1 0] 0 -
A= ] (i} 1 |- B= 0|r I{!}= Xa
10 11 6] |8 %

{E) State Space Representation of # Order Linear System with r Forcing Function

Consider the following example
EXAMPLE B.2. A system is described by the following differential equation. Represent the
system in stabe space.

dx A’ ix
) +3 = + 4E+4: = iay(8) + 3uyith + & nift)

and outputs are
Wy = ﬂ%+3u1
2
W = jﬁ‘i‘
Solution : Select the skabe variables as
I

* ";:II: +|l_g

fl=.l'=_'t'2

Xy =Ty
£ = 1 () + Buglth + dua(l) - 3y — 4y — 4y
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8.4.3. State Space Representation for Transfer Function

Consider the following example
EXAMPLE B8.3. For the given transfer fum:hn-n.. cbtain the state model.
yls) K
uls) — g* + a8t +a,8+a,
Solution : This mansfer funchion has no Zeros,
(83 + 2% + a5 + 3,) wls) = Karls)

or Sls) + aystwis) + s wls) + ayuls) = Kuls)
Taking inverse Laplace

W+ {0 + a0 + oy pit) = Koult)

Gz} =

or ¥ {t) = Kulf) —ag ¥{£) — 2y ¥() - a1
Select the state variables as, first stabe variabde as output
]:"[I} =Xy
Vi) = 5 =y
Y =% ax,
V(E =

Y =- Ay Xq = fyTy — a2y + Ku(l)
Rewrith‘-g the equations
1’1 _Il
Xz = Xy )
Ey = oy X — 8% =iy xy + Kulf)

e e o 1 0]f=] [o
Ll=lo o 1 ] xy |+ 0 |wif)
.'-l:'a_J I.._::l =@ —iz || X3 K

wit) = [0 0F =y (&)

BLOCK DIAGRAM :
The block diagram of the given transfer function is shown in Fig. 8.3

-
[} - -
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Bew consider another case when the fransfer function has zeros.
I}:i'z...

I::IL‘

: Fig. 8.3.
EXAMPLE 8.4. Obilain the state model for the given transfer function.

G = 2 KEE)

8 4 @y8t 8+
Solution : Break the transfer function in two parts

1-"{5]' i :fll::E}. y{s} ¥
u(s) T wls) ()T P ras rmpsra (ear il
consi s} _ K
Blowr der #(5) T 2 hagst v agsta,
[5‘3 +.-.'|'3;z +a8+ "'l] _1;1[;] = Kﬂf.‘_i}
Taking inverse Laplace

Xo(B) + g 308 +ay 00 + ity 1y (#) = Kulf)
X (1) m =y (F) = g {F) = x {F) + Kaeli)
Select the state varlables as
%
¥ o= X =
.‘l] — 1'3
Rewrite X, omx,
%y =,
1"3 W=y Xy =y X = %, + Ku

T 0 1 0x] fo
Tala| O 0O 1 |[xs f+| 0 fud)

iy —d; —dp —d3 | % K
yis)
Consider, (5 = Cos + ;,
iz =208 [Cy s+ 0]

yi) = Coxy + Coxy
wit) =[C, C, 0] x(t)

= & 0 x
Xz

Xy
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8.5. SOLUTION OF THE TIME-INVARIANT STATE EQUATION

B.5.1. Solution of Homageneous State Equation : Laplace Transform Method

We know that

x(f) = Ax(#) + Buit) -(8.12)
u{f) = 0 for unforced response
Then () = Ax(F) - {813
Let us consider the analogous scalar equation

() = ax(H) (B.04)

Take the Laplace transform of equation (8.14)
s3t(s) - %(l1) = aXis)
(3 —a) Xis) = x(0)

or X(s) = (s —a)y =(0) ' - A8.15)
Take the inverse laplace of equation (8.15)

x(t) =" x(0) . (8.16)
If equation (#.16) is the solution of equation (B.14) then the solution of equation (8.13)

x(8) = &4 z{ll)
¢! = g{1) = State Transition Matrix (STM)

2,2 3.3 L r'li
=J+At+%:—+ﬂa—f_+....=§§ﬁ 317

o) = £g4s) = £ - AP
where 6(s) = Besolvant matrix

B.5.2. Properties of State Transition Matrices
For lime invariant systemn ¥ « Ax and

2,2 a3
) =M= I+At+A2—: + %+
@ a0 =eAMal
() o) = e = (U = 901!
B O F}ij "% éﬁ' U g Ne—yreo—
cafg =TT 0 BT s
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